Information Theoretic Bounds for Compound MIMO Gaussian Channels

In this paper, achievable rates for compound Gaussian multiple-input-multiple-output (MIMO) channels are derived. Two types of channels, modeled in the frequency domain, are considered when: 1) the channel frequency response matrix H belongs to a subset of H infin normed linear space, and 2) the pow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2009-04, Vol.55 (4), p.1603-1617
Hauptverfasser: Denic, S.Z., Charalambous, C.D., Djouadi, S.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1617
container_issue 4
container_start_page 1603
container_title IEEE transactions on information theory
container_volume 55
creator Denic, S.Z.
Charalambous, C.D.
Djouadi, S.M.
description In this paper, achievable rates for compound Gaussian multiple-input-multiple-output (MIMO) channels are derived. Two types of channels, modeled in the frequency domain, are considered when: 1) the channel frequency response matrix H belongs to a subset of H infin normed linear space, and 2) the power spectral density (PSD) matrix of the Gaussian noise belongs to a subset of L 1 space. The achievable rates of these two compound channels are related to the maximin of the mutual information rate. The minimum is with respect to the set of all possible H matrices or all possible PSD matrices of the noise. The maximum is with respect to all possible PSD matrices of the transmitted signal with bounded power. For the compound channel modeled by the set of H matrices, it is shown, under certain conditions, that the code for the worst case channel can be used for the whole class of channels. For the same model, the water-filling argument implies that the larger the set of matrices H , the smaller the bandwidth of the transmitted signal will be. For the second compound channel, the explicit relation between the maximizing PSD matrix of the transmitted signal and the minimizing PSD matrix of the noise is found. Two PSD matrices are related through a Riccati equation, which is always present in Kalman filtering and liner-quadratic Gaussian control problems.
doi_str_mv 10.1109/TIT.2009.2013007
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4802319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4802319</ieee_id><sourcerecordid>919915750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-7e04e3b59dc102587dcfd03db1ab8b66ff023f1b9bb487a75a5545043eaff3023</originalsourceid><addsrcrecordid>eNp9kMFLwzAUxoMoOKd3wUsR1FNnXpMszU0dOgsbu8xzSNuEdbTJTNqD_70ZGzt4EB7v8fh-74P3IXQLeAKAxfO6WE8yjEVsQDDmZ2gEjPFUTBk9RyOMIU8FpfklugphG1fKIBuhl8Ia5zvVN84m6412XvdNlby5wdYhiVIyc91uvyXLYrlK5moIoVE2mW2UtboN1-jCqDbom-Mco6-P9_XsM12s5sXsdZFWJCd9yjWmmpRM1BXgjOW8rkyNSV2CKvNyOjUGZ8RAKcqS5lxxphijDFOilTEkamP0dPDdefc96NDLrgmVbltltRuCFCAEMM5wJB__JQmdEpZF6zG6_wNu3eBt_EKCYILE2kP4AFXeheC1kTvfdMr_SMByn7yMyct98vKYfDx5OPqqUKnWeGWrJpzuMqA88hC5uwPXaK1PMs3jtyDIL1f-iiU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195935934</pqid></control><display><type>article</type><title>Information Theoretic Bounds for Compound MIMO Gaussian Channels</title><source>IEEE Electronic Library (IEL)</source><creator>Denic, S.Z. ; Charalambous, C.D. ; Djouadi, S.M.</creator><creatorcontrib>Denic, S.Z. ; Charalambous, C.D. ; Djouadi, S.M.</creatorcontrib><description>In this paper, achievable rates for compound Gaussian multiple-input-multiple-output (MIMO) channels are derived. Two types of channels, modeled in the frequency domain, are considered when: 1) the channel frequency response matrix H belongs to a subset of H infin normed linear space, and 2) the power spectral density (PSD) matrix of the Gaussian noise belongs to a subset of L 1 space. The achievable rates of these two compound channels are related to the maximin of the mutual information rate. The minimum is with respect to the set of all possible H matrices or all possible PSD matrices of the noise. The maximum is with respect to all possible PSD matrices of the transmitted signal with bounded power. For the compound channel modeled by the set of H matrices, it is shown, under certain conditions, that the code for the worst case channel can be used for the whole class of channels. For the same model, the water-filling argument implies that the larger the set of matrices H , the smaller the bandwidth of the transmitted signal will be. For the second compound channel, the explicit relation between the maximizing PSD matrix of the transmitted signal and the minimizing PSD matrix of the noise is found. Two PSD matrices are related through a Riccati equation, which is always present in Kalman filtering and liner-quadratic Gaussian control problems.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2009.2013007</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bandwidth ; Bandwidths ; Channel degrading ; Channels ; Communication channels ; compound channel ; Compound channels ; Data transmission ; Density ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Filtering ; Frequency domain analysis ; Frequency response ; Gaussian ; Gaussian channels ; Gaussian noise ; Information theory ; Information, signal and communications theory ; Input output ; Kalman filters ; Mathematical analysis ; Matrices ; Matrix methods ; MIMO ; multiple-input-multiple-output (MIMO) Gaussian channel ; Mutual information ; Noise ; Riccati equations ; Signal and communications theory ; Signal to noise ratio ; Signal, noise ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Transmission and modulation (techniques and equipments)</subject><ispartof>IEEE transactions on information theory, 2009-04, Vol.55 (4), p.1603-1617</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-7e04e3b59dc102587dcfd03db1ab8b66ff023f1b9bb487a75a5545043eaff3023</citedby><cites>FETCH-LOGICAL-c383t-7e04e3b59dc102587dcfd03db1ab8b66ff023f1b9bb487a75a5545043eaff3023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4802319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4802319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21472001$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Denic, S.Z.</creatorcontrib><creatorcontrib>Charalambous, C.D.</creatorcontrib><creatorcontrib>Djouadi, S.M.</creatorcontrib><title>Information Theoretic Bounds for Compound MIMO Gaussian Channels</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>In this paper, achievable rates for compound Gaussian multiple-input-multiple-output (MIMO) channels are derived. Two types of channels, modeled in the frequency domain, are considered when: 1) the channel frequency response matrix H belongs to a subset of H infin normed linear space, and 2) the power spectral density (PSD) matrix of the Gaussian noise belongs to a subset of L 1 space. The achievable rates of these two compound channels are related to the maximin of the mutual information rate. The minimum is with respect to the set of all possible H matrices or all possible PSD matrices of the noise. The maximum is with respect to all possible PSD matrices of the transmitted signal with bounded power. For the compound channel modeled by the set of H matrices, it is shown, under certain conditions, that the code for the worst case channel can be used for the whole class of channels. For the same model, the water-filling argument implies that the larger the set of matrices H , the smaller the bandwidth of the transmitted signal will be. For the second compound channel, the explicit relation between the maximizing PSD matrix of the transmitted signal and the minimizing PSD matrix of the noise is found. Two PSD matrices are related through a Riccati equation, which is always present in Kalman filtering and liner-quadratic Gaussian control problems.</description><subject>Applied sciences</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Channel degrading</subject><subject>Channels</subject><subject>Communication channels</subject><subject>compound channel</subject><subject>Compound channels</subject><subject>Data transmission</subject><subject>Density</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Frequency domain analysis</subject><subject>Frequency response</subject><subject>Gaussian</subject><subject>Gaussian channels</subject><subject>Gaussian noise</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Input output</subject><subject>Kalman filters</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Matrix methods</subject><subject>MIMO</subject><subject>multiple-input-multiple-output (MIMO) Gaussian channel</subject><subject>Mutual information</subject><subject>Noise</subject><subject>Riccati equations</subject><subject>Signal and communications theory</subject><subject>Signal to noise ratio</subject><subject>Signal, noise</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Transmission and modulation (techniques and equipments)</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kMFLwzAUxoMoOKd3wUsR1FNnXpMszU0dOgsbu8xzSNuEdbTJTNqD_70ZGzt4EB7v8fh-74P3IXQLeAKAxfO6WE8yjEVsQDDmZ2gEjPFUTBk9RyOMIU8FpfklugphG1fKIBuhl8Ia5zvVN84m6412XvdNlby5wdYhiVIyc91uvyXLYrlK5moIoVE2mW2UtboN1-jCqDbom-Mco6-P9_XsM12s5sXsdZFWJCd9yjWmmpRM1BXgjOW8rkyNSV2CKvNyOjUGZ8RAKcqS5lxxphijDFOilTEkamP0dPDdefc96NDLrgmVbltltRuCFCAEMM5wJB__JQmdEpZF6zG6_wNu3eBt_EKCYILE2kP4AFXeheC1kTvfdMr_SMByn7yMyct98vKYfDx5OPqqUKnWeGWrJpzuMqA88hC5uwPXaK1PMs3jtyDIL1f-iiU</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Denic, S.Z.</creator><creator>Charalambous, C.D.</creator><creator>Djouadi, S.M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090401</creationdate><title>Information Theoretic Bounds for Compound MIMO Gaussian Channels</title><author>Denic, S.Z. ; Charalambous, C.D. ; Djouadi, S.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-7e04e3b59dc102587dcfd03db1ab8b66ff023f1b9bb487a75a5545043eaff3023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Channel degrading</topic><topic>Channels</topic><topic>Communication channels</topic><topic>compound channel</topic><topic>Compound channels</topic><topic>Data transmission</topic><topic>Density</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Frequency domain analysis</topic><topic>Frequency response</topic><topic>Gaussian</topic><topic>Gaussian channels</topic><topic>Gaussian noise</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Input output</topic><topic>Kalman filters</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Matrix methods</topic><topic>MIMO</topic><topic>multiple-input-multiple-output (MIMO) Gaussian channel</topic><topic>Mutual information</topic><topic>Noise</topic><topic>Riccati equations</topic><topic>Signal and communications theory</topic><topic>Signal to noise ratio</topic><topic>Signal, noise</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Transmission and modulation (techniques and equipments)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Denic, S.Z.</creatorcontrib><creatorcontrib>Charalambous, C.D.</creatorcontrib><creatorcontrib>Djouadi, S.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Denic, S.Z.</au><au>Charalambous, C.D.</au><au>Djouadi, S.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information Theoretic Bounds for Compound MIMO Gaussian Channels</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2009-04-01</date><risdate>2009</risdate><volume>55</volume><issue>4</issue><spage>1603</spage><epage>1617</epage><pages>1603-1617</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>In this paper, achievable rates for compound Gaussian multiple-input-multiple-output (MIMO) channels are derived. Two types of channels, modeled in the frequency domain, are considered when: 1) the channel frequency response matrix H belongs to a subset of H infin normed linear space, and 2) the power spectral density (PSD) matrix of the Gaussian noise belongs to a subset of L 1 space. The achievable rates of these two compound channels are related to the maximin of the mutual information rate. The minimum is with respect to the set of all possible H matrices or all possible PSD matrices of the noise. The maximum is with respect to all possible PSD matrices of the transmitted signal with bounded power. For the compound channel modeled by the set of H matrices, it is shown, under certain conditions, that the code for the worst case channel can be used for the whole class of channels. For the same model, the water-filling argument implies that the larger the set of matrices H , the smaller the bandwidth of the transmitted signal will be. For the second compound channel, the explicit relation between the maximizing PSD matrix of the transmitted signal and the minimizing PSD matrix of the noise is found. Two PSD matrices are related through a Riccati equation, which is always present in Kalman filtering and liner-quadratic Gaussian control problems.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2009.2013007</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2009-04, Vol.55 (4), p.1603-1617
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_4802319
source IEEE Electronic Library (IEL)
subjects Applied sciences
Bandwidth
Bandwidths
Channel degrading
Channels
Communication channels
compound channel
Compound channels
Data transmission
Density
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Filtering
Frequency domain analysis
Frequency response
Gaussian
Gaussian channels
Gaussian noise
Information theory
Information, signal and communications theory
Input output
Kalman filters
Mathematical analysis
Matrices
Matrix methods
MIMO
multiple-input-multiple-output (MIMO) Gaussian channel
Mutual information
Noise
Riccati equations
Signal and communications theory
Signal to noise ratio
Signal, noise
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Transmission and modulation (techniques and equipments)
title Information Theoretic Bounds for Compound MIMO Gaussian Channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information%20Theoretic%20Bounds%20for%20Compound%20MIMO%20Gaussian%20Channels&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Denic,%20S.Z.&rft.date=2009-04-01&rft.volume=55&rft.issue=4&rft.spage=1603&rft.epage=1617&rft.pages=1603-1617&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2009.2013007&rft_dat=%3Cproquest_RIE%3E919915750%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195935934&rft_id=info:pmid/&rft_ieee_id=4802319&rfr_iscdi=true