Integer Gaussian convolution with cache memory for real-time processing of the Scale Invariant Feature Transform algorithm

The Gaussian smoothing operator is a 2-D convolution operator which is used to blur images and remove detail and noise in the SIFT (scale invariant feature transform) algorithm. For real-time processing of SIFT, we use our integer Gaussian filtering and cache memory managing schemes using SSE instru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Le Tran Su, Phil Jung Ghang, Jong Soo Lee
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 301
container_issue
container_start_page 298
container_title
container_volume
creator Le Tran Su
Phil Jung Ghang
Jong Soo Lee
description The Gaussian smoothing operator is a 2-D convolution operator which is used to blur images and remove detail and noise in the SIFT (scale invariant feature transform) algorithm. For real-time processing of SIFT, we use our integer Gaussian filtering and cache memory managing schemes using SSE instructions. Single instruction multiple data (SIMD) extensions are currently available in new Pentium processors. We optimize the integer Gaussian filter mask for better precision in key-points detection and compare the result of applying the scheme with those obtained by using the floating processing technique. We apply our scheme to various kinds of images and measure the effectiveness.
doi_str_mv 10.1109/IFOST.2007.4798587
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4798587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4798587</ieee_id><sourcerecordid>4798587</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5e980ac99bb35a2950bc6f81c6546f0ed4b166a92cec7facf7783629c7e49d0b3</originalsourceid><addsrcrecordid>eNpFkMFqAjEYhFOK0Nb6Au0lL7A22U02ybFItQuCB-1Z_o3_aspuItlosU_fLRU6l2Fg5jsMIU-cTTln5qWar9abac6YmgpltNTqhkyM0lzkQnBd8Pz2PxdSGzYiD791w5Ti-R2Z9P0nGyRkoQW_J9-VT7jHSBdw6nsHntrgz6E9JRc8_XLpQC3YA9IOuxAvtAmRRoQ2S65DeozB4jDzexoamoba2kKLtPJniAMs0TlCOkWkmwi-H8YdhXYf4sDtHsmogbbHydXH5GP-tpm9Z8vVopq9LjPHlUyZRKMZWGPqupCQG8lqWzaa21KKsmG4EzUvSzC5RasasI1SuihzYxUKs2N1MSbPf1yHiNtjdB3Ey_Z6X_ED19pkHA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Integer Gaussian convolution with cache memory for real-time processing of the Scale Invariant Feature Transform algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Le Tran Su ; Phil Jung Ghang ; Jong Soo Lee</creator><creatorcontrib>Le Tran Su ; Phil Jung Ghang ; Jong Soo Lee</creatorcontrib><description>The Gaussian smoothing operator is a 2-D convolution operator which is used to blur images and remove detail and noise in the SIFT (scale invariant feature transform) algorithm. For real-time processing of SIFT, we use our integer Gaussian filtering and cache memory managing schemes using SSE instructions. Single instruction multiple data (SIMD) extensions are currently available in new Pentium processors. We optimize the integer Gaussian filter mask for better precision in key-points detection and compare the result of applying the scheme with those obtained by using the floating processing technique. We apply our scheme to various kinds of images and measure the effectiveness.</description><identifier>ISBN: 9781424435890</identifier><identifier>ISBN: 1424435897</identifier><identifier>EISBN: 9781424418312</identifier><identifier>EISBN: 1424418313</identifier><identifier>DOI: 10.1109/IFOST.2007.4798587</identifier><identifier>LCCN: 2007907712</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cache memory ; Convolution ; Filtering ; Filters ; Gaussian filtering ; Gaussian noise ; Image converters ; Information technology ; integer Gaussian mask ; Kernel ; Shape ; SIFT algorithm ; Smoothing methods ; SSE instructions</subject><ispartof>2007 International Forum on Strategic Technology, 2007, p.298-301</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4798587$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4798587$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Le Tran Su</creatorcontrib><creatorcontrib>Phil Jung Ghang</creatorcontrib><creatorcontrib>Jong Soo Lee</creatorcontrib><title>Integer Gaussian convolution with cache memory for real-time processing of the Scale Invariant Feature Transform algorithm</title><title>2007 International Forum on Strategic Technology</title><addtitle>IFOST</addtitle><description>The Gaussian smoothing operator is a 2-D convolution operator which is used to blur images and remove detail and noise in the SIFT (scale invariant feature transform) algorithm. For real-time processing of SIFT, we use our integer Gaussian filtering and cache memory managing schemes using SSE instructions. Single instruction multiple data (SIMD) extensions are currently available in new Pentium processors. We optimize the integer Gaussian filter mask for better precision in key-points detection and compare the result of applying the scheme with those obtained by using the floating processing technique. We apply our scheme to various kinds of images and measure the effectiveness.</description><subject>Cache memory</subject><subject>Convolution</subject><subject>Filtering</subject><subject>Filters</subject><subject>Gaussian filtering</subject><subject>Gaussian noise</subject><subject>Image converters</subject><subject>Information technology</subject><subject>integer Gaussian mask</subject><subject>Kernel</subject><subject>Shape</subject><subject>SIFT algorithm</subject><subject>Smoothing methods</subject><subject>SSE instructions</subject><isbn>9781424435890</isbn><isbn>1424435897</isbn><isbn>9781424418312</isbn><isbn>1424418313</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMFqAjEYhFOK0Nb6Au0lL7A22U02ybFItQuCB-1Z_o3_aspuItlosU_fLRU6l2Fg5jsMIU-cTTln5qWar9abac6YmgpltNTqhkyM0lzkQnBd8Pz2PxdSGzYiD791w5Ti-R2Z9P0nGyRkoQW_J9-VT7jHSBdw6nsHntrgz6E9JRc8_XLpQC3YA9IOuxAvtAmRRoQ2S65DeozB4jDzexoamoba2kKLtPJniAMs0TlCOkWkmwi-H8YdhXYf4sDtHsmogbbHydXH5GP-tpm9Z8vVopq9LjPHlUyZRKMZWGPqupCQG8lqWzaa21KKsmG4EzUvSzC5RasasI1SuihzYxUKs2N1MSbPf1yHiNtjdB3Ey_Z6X_ED19pkHA</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Le Tran Su</creator><creator>Phil Jung Ghang</creator><creator>Jong Soo Lee</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200710</creationdate><title>Integer Gaussian convolution with cache memory for real-time processing of the Scale Invariant Feature Transform algorithm</title><author>Le Tran Su ; Phil Jung Ghang ; Jong Soo Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5e980ac99bb35a2950bc6f81c6546f0ed4b166a92cec7facf7783629c7e49d0b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Cache memory</topic><topic>Convolution</topic><topic>Filtering</topic><topic>Filters</topic><topic>Gaussian filtering</topic><topic>Gaussian noise</topic><topic>Image converters</topic><topic>Information technology</topic><topic>integer Gaussian mask</topic><topic>Kernel</topic><topic>Shape</topic><topic>SIFT algorithm</topic><topic>Smoothing methods</topic><topic>SSE instructions</topic><toplevel>online_resources</toplevel><creatorcontrib>Le Tran Su</creatorcontrib><creatorcontrib>Phil Jung Ghang</creatorcontrib><creatorcontrib>Jong Soo Lee</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Le Tran Su</au><au>Phil Jung Ghang</au><au>Jong Soo Lee</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Integer Gaussian convolution with cache memory for real-time processing of the Scale Invariant Feature Transform algorithm</atitle><btitle>2007 International Forum on Strategic Technology</btitle><stitle>IFOST</stitle><date>2007-10</date><risdate>2007</risdate><spage>298</spage><epage>301</epage><pages>298-301</pages><isbn>9781424435890</isbn><isbn>1424435897</isbn><eisbn>9781424418312</eisbn><eisbn>1424418313</eisbn><abstract>The Gaussian smoothing operator is a 2-D convolution operator which is used to blur images and remove detail and noise in the SIFT (scale invariant feature transform) algorithm. For real-time processing of SIFT, we use our integer Gaussian filtering and cache memory managing schemes using SSE instructions. Single instruction multiple data (SIMD) extensions are currently available in new Pentium processors. We optimize the integer Gaussian filter mask for better precision in key-points detection and compare the result of applying the scheme with those obtained by using the floating processing technique. We apply our scheme to various kinds of images and measure the effectiveness.</abstract><pub>IEEE</pub><doi>10.1109/IFOST.2007.4798587</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424435890
ispartof 2007 International Forum on Strategic Technology, 2007, p.298-301
issn
language eng
recordid cdi_ieee_primary_4798587
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cache memory
Convolution
Filtering
Filters
Gaussian filtering
Gaussian noise
Image converters
Information technology
integer Gaussian mask
Kernel
Shape
SIFT algorithm
Smoothing methods
SSE instructions
title Integer Gaussian convolution with cache memory for real-time processing of the Scale Invariant Feature Transform algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T14%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Integer%20Gaussian%20convolution%20with%20cache%20memory%20for%20real-time%20processing%20of%20the%20Scale%20Invariant%20Feature%20Transform%20algorithm&rft.btitle=2007%20International%20Forum%20on%20Strategic%20Technology&rft.au=Le%20Tran%20Su&rft.date=2007-10&rft.spage=298&rft.epage=301&rft.pages=298-301&rft.isbn=9781424435890&rft.isbn_list=1424435897&rft_id=info:doi/10.1109/IFOST.2007.4798587&rft_dat=%3Cieee_6IE%3E4798587%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424418312&rft.eisbn_list=1424418313&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4798587&rfr_iscdi=true