InSb Quantum-Well-Based Micro-Hall Devices: Potential for pT Detectivity

A series of high-mobility Al 0.12 In 0.88 Sb/InSb heterostructures were grown by molecular beam epitaxy to investigate the fabrication of micro-Hall magnetic field sensors. By applying remote delta-doping of different densities to control the 2-D electron density in the quantum channel, as well as s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2009-04, Vol.56 (4), p.683-687
Hauptverfasser: Kunets, V.P., Easwaran, S., Black, W.T., Guzun, D., Mazur, Y.I., Goel, N., Mishima, T.D., Santos, M.B., Salamo, G.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 687
container_issue 4
container_start_page 683
container_title IEEE transactions on electron devices
container_volume 56
creator Kunets, V.P.
Easwaran, S.
Black, W.T.
Guzun, D.
Mazur, Y.I.
Goel, N.
Mishima, T.D.
Santos, M.B.
Salamo, G.J.
description A series of high-mobility Al 0.12 In 0.88 Sb/InSb heterostructures were grown by molecular beam epitaxy to investigate the fabrication of micro-Hall magnetic field sensors. By applying remote delta-doping of different densities to control the 2-D electron density in the quantum channel, as well as scattering mechanisms, the detection limit of the micro-Hall device was improved. The present studies show that micro-Hall devices 35 mum wide have the ability to detect a magnetic field of 25 nT at 300 K and 11 nT at 80 K operating at a frequency of 10 kHz. Our results indicate that the use of devices with larger sizes, based on the same material system, will lead to magnetic field detection in the pT range at low temperatures and sub-nT range even at room temperature.
doi_str_mv 10.1109/TED.2009.2014187
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4798213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4798213</ieee_id><sourcerecordid>869859596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-f0f761dbde0eaf46dc226a0e2f765372d7d08951292d1fa023a3bebd4da0a68b3</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMouK7eBS9FUE_VyUfTxJuuHysoKq54DGkzhUi3XZtW2H9vll08ePAyw2SemczMS8ghhXNKQV_Mbm_OGYCOhgqq8i0yolmWp1oKuU1GAFSlmiu-S_ZC-IyhFIKNyPSheSuS18E2_TBPP7Cu02sb0CVPvuzadGrrOrnBb19iuExe2h6b3ts6qdouWcxipsey99--X-6TncrWAQ82fkze725nk2n6-Hz_MLl6TEshdJ9WUOWSusIhoK2EdCVj0gKy-JzxnLncgdIZZZo5Wllg3PICCyecBStVwcfkbN130bVfA4bezH0o49y2wXYIRkmtMp1pGcnTf0kuMtDxqwge_wE_26Fr4hZGZVKznAmIEKyheJYQOqzMovNz2y0NBbNSwEQFzEoBs1Eglpxs-tpQ2rrqbFP68FvHaC4YcBG5ozXnEfE3LXKtGOX8B-CAjPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856927240</pqid></control><display><type>article</type><title>InSb Quantum-Well-Based Micro-Hall Devices: Potential for pT Detectivity</title><source>IEEE Electronic Library (IEL)</source><creator>Kunets, V.P. ; Easwaran, S. ; Black, W.T. ; Guzun, D. ; Mazur, Y.I. ; Goel, N. ; Mishima, T.D. ; Santos, M.B. ; Salamo, G.J.</creator><creatorcontrib>Kunets, V.P. ; Easwaran, S. ; Black, W.T. ; Guzun, D. ; Mazur, Y.I. ; Goel, N. ; Mishima, T.D. ; Santos, M.B. ; Salamo, G.J.</creatorcontrib><description>A series of high-mobility Al 0.12 In 0.88 Sb/InSb heterostructures were grown by molecular beam epitaxy to investigate the fabrication of micro-Hall magnetic field sensors. By applying remote delta-doping of different densities to control the 2-D electron density in the quantum channel, as well as scattering mechanisms, the detection limit of the micro-Hall device was improved. The present studies show that micro-Hall devices 35 mum wide have the ability to detect a magnetic field of 25 nT at 300 K and 11 nT at 80 K operating at a frequency of 10 kHz. Our results indicate that the use of devices with larger sizes, based on the same material system, will lead to magnetic field detection in the pT range at low temperatures and sub-nT range even at room temperature.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2009.2014187</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Channels ; Compound structure devices ; Density ; Devices ; Electron density ; Electronics ; Exact sciences and technology ; Frequency measurement ; General equipment and techniques ; hbox{In}_{0.12}\hbox{Al}_{0.88}\hbox{Sb} ; Indium antimonides ; InSb ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Intermetallics ; Magnetic devices ; Magnetic fields ; magnetic sensitivity ; micro-Hall effect devices ; Microelectronic fabrication (materials and surfaces technology) ; Molecular beam epitaxy ; narrow band gap semiconductor material ; Noise ; Physics ; quantum well ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Sensitivity ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Temperature measurement ; Temperature sensors</subject><ispartof>IEEE transactions on electron devices, 2009-04, Vol.56 (4), p.683-687</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-f0f761dbde0eaf46dc226a0e2f765372d7d08951292d1fa023a3bebd4da0a68b3</citedby><cites>FETCH-LOGICAL-c449t-f0f761dbde0eaf46dc226a0e2f765372d7d08951292d1fa023a3bebd4da0a68b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4798213$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4798213$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21742034$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kunets, V.P.</creatorcontrib><creatorcontrib>Easwaran, S.</creatorcontrib><creatorcontrib>Black, W.T.</creatorcontrib><creatorcontrib>Guzun, D.</creatorcontrib><creatorcontrib>Mazur, Y.I.</creatorcontrib><creatorcontrib>Goel, N.</creatorcontrib><creatorcontrib>Mishima, T.D.</creatorcontrib><creatorcontrib>Santos, M.B.</creatorcontrib><creatorcontrib>Salamo, G.J.</creatorcontrib><title>InSb Quantum-Well-Based Micro-Hall Devices: Potential for pT Detectivity</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>A series of high-mobility Al 0.12 In 0.88 Sb/InSb heterostructures were grown by molecular beam epitaxy to investigate the fabrication of micro-Hall magnetic field sensors. By applying remote delta-doping of different densities to control the 2-D electron density in the quantum channel, as well as scattering mechanisms, the detection limit of the micro-Hall device was improved. The present studies show that micro-Hall devices 35 mum wide have the ability to detect a magnetic field of 25 nT at 300 K and 11 nT at 80 K operating at a frequency of 10 kHz. Our results indicate that the use of devices with larger sizes, based on the same material system, will lead to magnetic field detection in the pT range at low temperatures and sub-nT range even at room temperature.</description><subject>Applied sciences</subject><subject>Channels</subject><subject>Compound structure devices</subject><subject>Density</subject><subject>Devices</subject><subject>Electron density</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Frequency measurement</subject><subject>General equipment and techniques</subject><subject>hbox{In}_{0.12}\hbox{Al}_{0.88}\hbox{Sb}</subject><subject>Indium antimonides</subject><subject>InSb</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Intermetallics</subject><subject>Magnetic devices</subject><subject>Magnetic fields</subject><subject>magnetic sensitivity</subject><subject>micro-Hall effect devices</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Molecular beam epitaxy</subject><subject>narrow band gap semiconductor material</subject><subject>Noise</subject><subject>Physics</subject><subject>quantum well</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Sensitivity</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1LxDAQhoMouK7eBS9FUE_VyUfTxJuuHysoKq54DGkzhUi3XZtW2H9vll08ePAyw2SemczMS8ghhXNKQV_Mbm_OGYCOhgqq8i0yolmWp1oKuU1GAFSlmiu-S_ZC-IyhFIKNyPSheSuS18E2_TBPP7Cu02sb0CVPvuzadGrrOrnBb19iuExe2h6b3ts6qdouWcxipsey99--X-6TncrWAQ82fkze725nk2n6-Hz_MLl6TEshdJ9WUOWSusIhoK2EdCVj0gKy-JzxnLncgdIZZZo5Wllg3PICCyecBStVwcfkbN130bVfA4bezH0o49y2wXYIRkmtMp1pGcnTf0kuMtDxqwge_wE_26Fr4hZGZVKznAmIEKyheJYQOqzMovNz2y0NBbNSwEQFzEoBs1Eglpxs-tpQ2rrqbFP68FvHaC4YcBG5ozXnEfE3LXKtGOX8B-CAjPA</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Kunets, V.P.</creator><creator>Easwaran, S.</creator><creator>Black, W.T.</creator><creator>Guzun, D.</creator><creator>Mazur, Y.I.</creator><creator>Goel, N.</creator><creator>Mishima, T.D.</creator><creator>Santos, M.B.</creator><creator>Salamo, G.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>7QF</scope><scope>JG9</scope></search><sort><creationdate>20090401</creationdate><title>InSb Quantum-Well-Based Micro-Hall Devices: Potential for pT Detectivity</title><author>Kunets, V.P. ; Easwaran, S. ; Black, W.T. ; Guzun, D. ; Mazur, Y.I. ; Goel, N. ; Mishima, T.D. ; Santos, M.B. ; Salamo, G.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-f0f761dbde0eaf46dc226a0e2f765372d7d08951292d1fa023a3bebd4da0a68b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Channels</topic><topic>Compound structure devices</topic><topic>Density</topic><topic>Devices</topic><topic>Electron density</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Frequency measurement</topic><topic>General equipment and techniques</topic><topic>hbox{In}_{0.12}\hbox{Al}_{0.88}\hbox{Sb}</topic><topic>Indium antimonides</topic><topic>InSb</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Intermetallics</topic><topic>Magnetic devices</topic><topic>Magnetic fields</topic><topic>magnetic sensitivity</topic><topic>micro-Hall effect devices</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Molecular beam epitaxy</topic><topic>narrow band gap semiconductor material</topic><topic>Noise</topic><topic>Physics</topic><topic>quantum well</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Sensitivity</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kunets, V.P.</creatorcontrib><creatorcontrib>Easwaran, S.</creatorcontrib><creatorcontrib>Black, W.T.</creatorcontrib><creatorcontrib>Guzun, D.</creatorcontrib><creatorcontrib>Mazur, Y.I.</creatorcontrib><creatorcontrib>Goel, N.</creatorcontrib><creatorcontrib>Mishima, T.D.</creatorcontrib><creatorcontrib>Santos, M.B.</creatorcontrib><creatorcontrib>Salamo, G.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aluminium Industry Abstracts</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kunets, V.P.</au><au>Easwaran, S.</au><au>Black, W.T.</au><au>Guzun, D.</au><au>Mazur, Y.I.</au><au>Goel, N.</au><au>Mishima, T.D.</au><au>Santos, M.B.</au><au>Salamo, G.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>InSb Quantum-Well-Based Micro-Hall Devices: Potential for pT Detectivity</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2009-04-01</date><risdate>2009</risdate><volume>56</volume><issue>4</issue><spage>683</spage><epage>687</epage><pages>683-687</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>A series of high-mobility Al 0.12 In 0.88 Sb/InSb heterostructures were grown by molecular beam epitaxy to investigate the fabrication of micro-Hall magnetic field sensors. By applying remote delta-doping of different densities to control the 2-D electron density in the quantum channel, as well as scattering mechanisms, the detection limit of the micro-Hall device was improved. The present studies show that micro-Hall devices 35 mum wide have the ability to detect a magnetic field of 25 nT at 300 K and 11 nT at 80 K operating at a frequency of 10 kHz. Our results indicate that the use of devices with larger sizes, based on the same material system, will lead to magnetic field detection in the pT range at low temperatures and sub-nT range even at room temperature.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2009.2014187</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2009-04, Vol.56 (4), p.683-687
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_4798213
source IEEE Electronic Library (IEL)
subjects Applied sciences
Channels
Compound structure devices
Density
Devices
Electron density
Electronics
Exact sciences and technology
Frequency measurement
General equipment and techniques
hbox{In}_{0.12}\hbox{Al}_{0.88}\hbox{Sb}
Indium antimonides
InSb
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Intermetallics
Magnetic devices
Magnetic fields
magnetic sensitivity
micro-Hall effect devices
Microelectronic fabrication (materials and surfaces technology)
Molecular beam epitaxy
narrow band gap semiconductor material
Noise
Physics
quantum well
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Sensitivity
Sensors (chemical, optical, electrical, movement, gas, etc.)
remote sensing
Temperature measurement
Temperature sensors
title InSb Quantum-Well-Based Micro-Hall Devices: Potential for pT Detectivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A45%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=InSb%20Quantum-Well-Based%20Micro-Hall%20Devices:%20Potential%20for%20pT%20Detectivity&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Kunets,%20V.P.&rft.date=2009-04-01&rft.volume=56&rft.issue=4&rft.spage=683&rft.epage=687&rft.pages=683-687&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2009.2014187&rft_dat=%3Cproquest_RIE%3E869859596%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856927240&rft_id=info:pmid/&rft_ieee_id=4798213&rfr_iscdi=true