InSb Quantum-Well-Based Micro-Hall Devices: Potential for pT Detectivity
A series of high-mobility Al 0.12 In 0.88 Sb/InSb heterostructures were grown by molecular beam epitaxy to investigate the fabrication of micro-Hall magnetic field sensors. By applying remote delta-doping of different densities to control the 2-D electron density in the quantum channel, as well as s...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2009-04, Vol.56 (4), p.683-687 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 687 |
---|---|
container_issue | 4 |
container_start_page | 683 |
container_title | IEEE transactions on electron devices |
container_volume | 56 |
creator | Kunets, V.P. Easwaran, S. Black, W.T. Guzun, D. Mazur, Y.I. Goel, N. Mishima, T.D. Santos, M.B. Salamo, G.J. |
description | A series of high-mobility Al 0.12 In 0.88 Sb/InSb heterostructures were grown by molecular beam epitaxy to investigate the fabrication of micro-Hall magnetic field sensors. By applying remote delta-doping of different densities to control the 2-D electron density in the quantum channel, as well as scattering mechanisms, the detection limit of the micro-Hall device was improved. The present studies show that micro-Hall devices 35 mum wide have the ability to detect a magnetic field of 25 nT at 300 K and 11 nT at 80 K operating at a frequency of 10 kHz. Our results indicate that the use of devices with larger sizes, based on the same material system, will lead to magnetic field detection in the pT range at low temperatures and sub-nT range even at room temperature. |
doi_str_mv | 10.1109/TED.2009.2014187 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4798213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4798213</ieee_id><sourcerecordid>869859596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-f0f761dbde0eaf46dc226a0e2f765372d7d08951292d1fa023a3bebd4da0a68b3</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMouK7eBS9FUE_VyUfTxJuuHysoKq54DGkzhUi3XZtW2H9vll08ePAyw2SemczMS8ghhXNKQV_Mbm_OGYCOhgqq8i0yolmWp1oKuU1GAFSlmiu-S_ZC-IyhFIKNyPSheSuS18E2_TBPP7Cu02sb0CVPvuzadGrrOrnBb19iuExe2h6b3ts6qdouWcxipsey99--X-6TncrWAQ82fkze725nk2n6-Hz_MLl6TEshdJ9WUOWSusIhoK2EdCVj0gKy-JzxnLncgdIZZZo5Wllg3PICCyecBStVwcfkbN130bVfA4bezH0o49y2wXYIRkmtMp1pGcnTf0kuMtDxqwge_wE_26Fr4hZGZVKznAmIEKyheJYQOqzMovNz2y0NBbNSwEQFzEoBs1Eglpxs-tpQ2rrqbFP68FvHaC4YcBG5ozXnEfE3LXKtGOX8B-CAjPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856927240</pqid></control><display><type>article</type><title>InSb Quantum-Well-Based Micro-Hall Devices: Potential for pT Detectivity</title><source>IEEE Electronic Library (IEL)</source><creator>Kunets, V.P. ; Easwaran, S. ; Black, W.T. ; Guzun, D. ; Mazur, Y.I. ; Goel, N. ; Mishima, T.D. ; Santos, M.B. ; Salamo, G.J.</creator><creatorcontrib>Kunets, V.P. ; Easwaran, S. ; Black, W.T. ; Guzun, D. ; Mazur, Y.I. ; Goel, N. ; Mishima, T.D. ; Santos, M.B. ; Salamo, G.J.</creatorcontrib><description>A series of high-mobility Al 0.12 In 0.88 Sb/InSb heterostructures were grown by molecular beam epitaxy to investigate the fabrication of micro-Hall magnetic field sensors. By applying remote delta-doping of different densities to control the 2-D electron density in the quantum channel, as well as scattering mechanisms, the detection limit of the micro-Hall device was improved. The present studies show that micro-Hall devices 35 mum wide have the ability to detect a magnetic field of 25 nT at 300 K and 11 nT at 80 K operating at a frequency of 10 kHz. Our results indicate that the use of devices with larger sizes, based on the same material system, will lead to magnetic field detection in the pT range at low temperatures and sub-nT range even at room temperature.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2009.2014187</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Channels ; Compound structure devices ; Density ; Devices ; Electron density ; Electronics ; Exact sciences and technology ; Frequency measurement ; General equipment and techniques ; hbox{In}_{0.12}\hbox{Al}_{0.88}\hbox{Sb} ; Indium antimonides ; InSb ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Intermetallics ; Magnetic devices ; Magnetic fields ; magnetic sensitivity ; micro-Hall effect devices ; Microelectronic fabrication (materials and surfaces technology) ; Molecular beam epitaxy ; narrow band gap semiconductor material ; Noise ; Physics ; quantum well ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Sensitivity ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Temperature measurement ; Temperature sensors</subject><ispartof>IEEE transactions on electron devices, 2009-04, Vol.56 (4), p.683-687</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-f0f761dbde0eaf46dc226a0e2f765372d7d08951292d1fa023a3bebd4da0a68b3</citedby><cites>FETCH-LOGICAL-c449t-f0f761dbde0eaf46dc226a0e2f765372d7d08951292d1fa023a3bebd4da0a68b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4798213$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4798213$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21742034$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kunets, V.P.</creatorcontrib><creatorcontrib>Easwaran, S.</creatorcontrib><creatorcontrib>Black, W.T.</creatorcontrib><creatorcontrib>Guzun, D.</creatorcontrib><creatorcontrib>Mazur, Y.I.</creatorcontrib><creatorcontrib>Goel, N.</creatorcontrib><creatorcontrib>Mishima, T.D.</creatorcontrib><creatorcontrib>Santos, M.B.</creatorcontrib><creatorcontrib>Salamo, G.J.</creatorcontrib><title>InSb Quantum-Well-Based Micro-Hall Devices: Potential for pT Detectivity</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>A series of high-mobility Al 0.12 In 0.88 Sb/InSb heterostructures were grown by molecular beam epitaxy to investigate the fabrication of micro-Hall magnetic field sensors. By applying remote delta-doping of different densities to control the 2-D electron density in the quantum channel, as well as scattering mechanisms, the detection limit of the micro-Hall device was improved. The present studies show that micro-Hall devices 35 mum wide have the ability to detect a magnetic field of 25 nT at 300 K and 11 nT at 80 K operating at a frequency of 10 kHz. Our results indicate that the use of devices with larger sizes, based on the same material system, will lead to magnetic field detection in the pT range at low temperatures and sub-nT range even at room temperature.</description><subject>Applied sciences</subject><subject>Channels</subject><subject>Compound structure devices</subject><subject>Density</subject><subject>Devices</subject><subject>Electron density</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Frequency measurement</subject><subject>General equipment and techniques</subject><subject>hbox{In}_{0.12}\hbox{Al}_{0.88}\hbox{Sb}</subject><subject>Indium antimonides</subject><subject>InSb</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Intermetallics</subject><subject>Magnetic devices</subject><subject>Magnetic fields</subject><subject>magnetic sensitivity</subject><subject>micro-Hall effect devices</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Molecular beam epitaxy</subject><subject>narrow band gap semiconductor material</subject><subject>Noise</subject><subject>Physics</subject><subject>quantum well</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Sensitivity</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1LxDAQhoMouK7eBS9FUE_VyUfTxJuuHysoKq54DGkzhUi3XZtW2H9vll08ePAyw2SemczMS8ghhXNKQV_Mbm_OGYCOhgqq8i0yolmWp1oKuU1GAFSlmiu-S_ZC-IyhFIKNyPSheSuS18E2_TBPP7Cu02sb0CVPvuzadGrrOrnBb19iuExe2h6b3ts6qdouWcxipsey99--X-6TncrWAQ82fkze725nk2n6-Hz_MLl6TEshdJ9WUOWSusIhoK2EdCVj0gKy-JzxnLncgdIZZZo5Wllg3PICCyecBStVwcfkbN130bVfA4bezH0o49y2wXYIRkmtMp1pGcnTf0kuMtDxqwge_wE_26Fr4hZGZVKznAmIEKyheJYQOqzMovNz2y0NBbNSwEQFzEoBs1Eglpxs-tpQ2rrqbFP68FvHaC4YcBG5ozXnEfE3LXKtGOX8B-CAjPA</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Kunets, V.P.</creator><creator>Easwaran, S.</creator><creator>Black, W.T.</creator><creator>Guzun, D.</creator><creator>Mazur, Y.I.</creator><creator>Goel, N.</creator><creator>Mishima, T.D.</creator><creator>Santos, M.B.</creator><creator>Salamo, G.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>7QF</scope><scope>JG9</scope></search><sort><creationdate>20090401</creationdate><title>InSb Quantum-Well-Based Micro-Hall Devices: Potential for pT Detectivity</title><author>Kunets, V.P. ; Easwaran, S. ; Black, W.T. ; Guzun, D. ; Mazur, Y.I. ; Goel, N. ; Mishima, T.D. ; Santos, M.B. ; Salamo, G.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-f0f761dbde0eaf46dc226a0e2f765372d7d08951292d1fa023a3bebd4da0a68b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Channels</topic><topic>Compound structure devices</topic><topic>Density</topic><topic>Devices</topic><topic>Electron density</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Frequency measurement</topic><topic>General equipment and techniques</topic><topic>hbox{In}_{0.12}\hbox{Al}_{0.88}\hbox{Sb}</topic><topic>Indium antimonides</topic><topic>InSb</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Intermetallics</topic><topic>Magnetic devices</topic><topic>Magnetic fields</topic><topic>magnetic sensitivity</topic><topic>micro-Hall effect devices</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Molecular beam epitaxy</topic><topic>narrow band gap semiconductor material</topic><topic>Noise</topic><topic>Physics</topic><topic>quantum well</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Sensitivity</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kunets, V.P.</creatorcontrib><creatorcontrib>Easwaran, S.</creatorcontrib><creatorcontrib>Black, W.T.</creatorcontrib><creatorcontrib>Guzun, D.</creatorcontrib><creatorcontrib>Mazur, Y.I.</creatorcontrib><creatorcontrib>Goel, N.</creatorcontrib><creatorcontrib>Mishima, T.D.</creatorcontrib><creatorcontrib>Santos, M.B.</creatorcontrib><creatorcontrib>Salamo, G.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aluminium Industry Abstracts</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kunets, V.P.</au><au>Easwaran, S.</au><au>Black, W.T.</au><au>Guzun, D.</au><au>Mazur, Y.I.</au><au>Goel, N.</au><au>Mishima, T.D.</au><au>Santos, M.B.</au><au>Salamo, G.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>InSb Quantum-Well-Based Micro-Hall Devices: Potential for pT Detectivity</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2009-04-01</date><risdate>2009</risdate><volume>56</volume><issue>4</issue><spage>683</spage><epage>687</epage><pages>683-687</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>A series of high-mobility Al 0.12 In 0.88 Sb/InSb heterostructures were grown by molecular beam epitaxy to investigate the fabrication of micro-Hall magnetic field sensors. By applying remote delta-doping of different densities to control the 2-D electron density in the quantum channel, as well as scattering mechanisms, the detection limit of the micro-Hall device was improved. The present studies show that micro-Hall devices 35 mum wide have the ability to detect a magnetic field of 25 nT at 300 K and 11 nT at 80 K operating at a frequency of 10 kHz. Our results indicate that the use of devices with larger sizes, based on the same material system, will lead to magnetic field detection in the pT range at low temperatures and sub-nT range even at room temperature.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2009.2014187</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2009-04, Vol.56 (4), p.683-687 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_4798213 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Channels Compound structure devices Density Devices Electron density Electronics Exact sciences and technology Frequency measurement General equipment and techniques hbox{In}_{0.12}\hbox{Al}_{0.88}\hbox{Sb} Indium antimonides InSb Instruments, apparatus, components and techniques common to several branches of physics and astronomy Intermetallics Magnetic devices Magnetic fields magnetic sensitivity micro-Hall effect devices Microelectronic fabrication (materials and surfaces technology) Molecular beam epitaxy narrow band gap semiconductor material Noise Physics quantum well Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Sensitivity Sensors (chemical, optical, electrical, movement, gas, etc.) remote sensing Temperature measurement Temperature sensors |
title | InSb Quantum-Well-Based Micro-Hall Devices: Potential for pT Detectivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A45%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=InSb%20Quantum-Well-Based%20Micro-Hall%20Devices:%20Potential%20for%20pT%20Detectivity&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Kunets,%20V.P.&rft.date=2009-04-01&rft.volume=56&rft.issue=4&rft.spage=683&rft.epage=687&rft.pages=683-687&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2009.2014187&rft_dat=%3Cproquest_RIE%3E869859596%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856927240&rft_id=info:pmid/&rft_ieee_id=4798213&rfr_iscdi=true |