On the growth rate of the weight distribution of irregular doubly-generalized LDPC codes

In this paper, an expression for the asymptotic growth rate of the number of small linear-weight codewords of irregular doubly-generalized LDPC (D-GLDPC) codes is derived. The expression is compact and generalizes existing results for LDPC and generalized LDPC (GLDPC) codes. Assuming that there exis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Flanagan, M.F., Paolini, E., Chiani, M., Fossorier, M.P.C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 929
container_issue
container_start_page 922
container_title
container_volume
creator Flanagan, M.F.
Paolini, E.
Chiani, M.
Fossorier, M.P.C.
description In this paper, an expression for the asymptotic growth rate of the number of small linear-weight codewords of irregular doubly-generalized LDPC (D-GLDPC) codes is derived. The expression is compact and generalizes existing results for LDPC and generalized LDPC (GLDPC) codes. Assuming that there exist check and variable nodes with minimum distance 2, it is shown that the growth rate depends only on these nodes. An important connection between this new result and the stability condition of D-GLDPC codes over the BEC is highlighted. Such a connection, previously observed for LDPC and GLDPC codes, is now extended to the case of D-GLDPC codes.
doi_str_mv 10.1109/ALLERTON.2008.4797656
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4797656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4797656</ieee_id><sourcerecordid>4797656</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-2b97b4d700e2b55c0468b597fd8cd8f7e0e6a031ca507082baaa5cdf8ac34acf3</originalsourceid><addsrcrecordid>eNpFUN1KwzAYjchAN_cEIuQFOr-mSZNcjjmnUJzIBO9Gfr52kbpKmjHm0-t04Lk5nB_OxSHkJodJnoO-nVbV_GW1fJowADXhUstSlGdkmHPGOdOs1Of_QsCADI9FDUqw8oKM-_4dfsBFobS8JG_LLU0bpE3s9mlDo0lIu_rX2mNoNon60KcY7C6FbnuMQozY7FoTqe92tj1kDW4xmjZ8oafV3fOMus5jf0UGtWl7HJ94RF7v56vZQ1YtF4-zaZWFXIqUMaul5V4CILNCOOClskLL2ivnVS0RsDRQ5M4IkKCYNcYI52tlXMGNq4sRuf7bDYi4_ozhw8TD-nRL8Q2mP1ao</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On the growth rate of the weight distribution of irregular doubly-generalized LDPC codes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Flanagan, M.F. ; Paolini, E. ; Chiani, M. ; Fossorier, M.P.C.</creator><creatorcontrib>Flanagan, M.F. ; Paolini, E. ; Chiani, M. ; Fossorier, M.P.C.</creatorcontrib><description>In this paper, an expression for the asymptotic growth rate of the number of small linear-weight codewords of irregular doubly-generalized LDPC (D-GLDPC) codes is derived. The expression is compact and generalizes existing results for LDPC and generalized LDPC (GLDPC) codes. Assuming that there exist check and variable nodes with minimum distance 2, it is shown that the growth rate depends only on these nodes. An important connection between this new result and the stability condition of D-GLDPC codes over the BEC is highlighted. Such a connection, previously observed for LDPC and GLDPC codes, is now extended to the case of D-GLDPC codes.</description><identifier>ISBN: 1424429250</identifier><identifier>ISBN: 9781424429257</identifier><identifier>EISBN: 1424429269</identifier><identifier>EISBN: 9781424429264</identifier><identifier>DOI: 10.1109/ALLERTON.2008.4797656</identifier><identifier>LCCN: 2008908526</identifier><language>eng</language><publisher>IEEE</publisher><subject>Asymptotic stability ; Bipartite graph ; Block codes ; Channel capacity ; Communication channels ; Equations ; Iterative decoding ; Parity check codes</subject><ispartof>2008 46th Annual Allerton Conference on Communication, Control, and Computing, 2008, p.922-929</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4797656$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27916,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4797656$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Flanagan, M.F.</creatorcontrib><creatorcontrib>Paolini, E.</creatorcontrib><creatorcontrib>Chiani, M.</creatorcontrib><creatorcontrib>Fossorier, M.P.C.</creatorcontrib><title>On the growth rate of the weight distribution of irregular doubly-generalized LDPC codes</title><title>2008 46th Annual Allerton Conference on Communication, Control, and Computing</title><addtitle>ALLERTON</addtitle><description>In this paper, an expression for the asymptotic growth rate of the number of small linear-weight codewords of irregular doubly-generalized LDPC (D-GLDPC) codes is derived. The expression is compact and generalizes existing results for LDPC and generalized LDPC (GLDPC) codes. Assuming that there exist check and variable nodes with minimum distance 2, it is shown that the growth rate depends only on these nodes. An important connection between this new result and the stability condition of D-GLDPC codes over the BEC is highlighted. Such a connection, previously observed for LDPC and GLDPC codes, is now extended to the case of D-GLDPC codes.</description><subject>Asymptotic stability</subject><subject>Bipartite graph</subject><subject>Block codes</subject><subject>Channel capacity</subject><subject>Communication channels</subject><subject>Equations</subject><subject>Iterative decoding</subject><subject>Parity check codes</subject><isbn>1424429250</isbn><isbn>9781424429257</isbn><isbn>1424429269</isbn><isbn>9781424429264</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUN1KwzAYjchAN_cEIuQFOr-mSZNcjjmnUJzIBO9Gfr52kbpKmjHm0-t04Lk5nB_OxSHkJodJnoO-nVbV_GW1fJowADXhUstSlGdkmHPGOdOs1Of_QsCADI9FDUqw8oKM-_4dfsBFobS8JG_LLU0bpE3s9mlDo0lIu_rX2mNoNon60KcY7C6FbnuMQozY7FoTqe92tj1kDW4xmjZ8oafV3fOMus5jf0UGtWl7HJ94RF7v56vZQ1YtF4-zaZWFXIqUMaul5V4CILNCOOClskLL2ivnVS0RsDRQ5M4IkKCYNcYI52tlXMGNq4sRuf7bDYi4_ozhw8TD-nRL8Q2mP1ao</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Flanagan, M.F.</creator><creator>Paolini, E.</creator><creator>Chiani, M.</creator><creator>Fossorier, M.P.C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>On the growth rate of the weight distribution of irregular doubly-generalized LDPC codes</title><author>Flanagan, M.F. ; Paolini, E. ; Chiani, M. ; Fossorier, M.P.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-2b97b4d700e2b55c0468b597fd8cd8f7e0e6a031ca507082baaa5cdf8ac34acf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Asymptotic stability</topic><topic>Bipartite graph</topic><topic>Block codes</topic><topic>Channel capacity</topic><topic>Communication channels</topic><topic>Equations</topic><topic>Iterative decoding</topic><topic>Parity check codes</topic><toplevel>online_resources</toplevel><creatorcontrib>Flanagan, M.F.</creatorcontrib><creatorcontrib>Paolini, E.</creatorcontrib><creatorcontrib>Chiani, M.</creatorcontrib><creatorcontrib>Fossorier, M.P.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Flanagan, M.F.</au><au>Paolini, E.</au><au>Chiani, M.</au><au>Fossorier, M.P.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On the growth rate of the weight distribution of irregular doubly-generalized LDPC codes</atitle><btitle>2008 46th Annual Allerton Conference on Communication, Control, and Computing</btitle><stitle>ALLERTON</stitle><date>2008-09</date><risdate>2008</risdate><spage>922</spage><epage>929</epage><pages>922-929</pages><isbn>1424429250</isbn><isbn>9781424429257</isbn><eisbn>1424429269</eisbn><eisbn>9781424429264</eisbn><abstract>In this paper, an expression for the asymptotic growth rate of the number of small linear-weight codewords of irregular doubly-generalized LDPC (D-GLDPC) codes is derived. The expression is compact and generalizes existing results for LDPC and generalized LDPC (GLDPC) codes. Assuming that there exist check and variable nodes with minimum distance 2, it is shown that the growth rate depends only on these nodes. An important connection between this new result and the stability condition of D-GLDPC codes over the BEC is highlighted. Such a connection, previously observed for LDPC and GLDPC codes, is now extended to the case of D-GLDPC codes.</abstract><pub>IEEE</pub><doi>10.1109/ALLERTON.2008.4797656</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424429250
ispartof 2008 46th Annual Allerton Conference on Communication, Control, and Computing, 2008, p.922-929
issn
language eng
recordid cdi_ieee_primary_4797656
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Asymptotic stability
Bipartite graph
Block codes
Channel capacity
Communication channels
Equations
Iterative decoding
Parity check codes
title On the growth rate of the weight distribution of irregular doubly-generalized LDPC codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20the%20growth%20rate%20of%20the%20weight%20distribution%20of%20irregular%20doubly-generalized%20LDPC%20codes&rft.btitle=2008%2046th%20Annual%20Allerton%20Conference%20on%20Communication,%20Control,%20and%20Computing&rft.au=Flanagan,%20M.F.&rft.date=2008-09&rft.spage=922&rft.epage=929&rft.pages=922-929&rft.isbn=1424429250&rft.isbn_list=9781424429257&rft_id=info:doi/10.1109/ALLERTON.2008.4797656&rft_dat=%3Cieee_6IE%3E4797656%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424429269&rft.eisbn_list=9781424429264&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4797656&rfr_iscdi=true