On the growth rate of the weight distribution of irregular doubly-generalized LDPC codes
In this paper, an expression for the asymptotic growth rate of the number of small linear-weight codewords of irregular doubly-generalized LDPC (D-GLDPC) codes is derived. The expression is compact and generalizes existing results for LDPC and generalized LDPC (GLDPC) codes. Assuming that there exis...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 929 |
---|---|
container_issue | |
container_start_page | 922 |
container_title | |
container_volume | |
creator | Flanagan, M.F. Paolini, E. Chiani, M. Fossorier, M.P.C. |
description | In this paper, an expression for the asymptotic growth rate of the number of small linear-weight codewords of irregular doubly-generalized LDPC (D-GLDPC) codes is derived. The expression is compact and generalizes existing results for LDPC and generalized LDPC (GLDPC) codes. Assuming that there exist check and variable nodes with minimum distance 2, it is shown that the growth rate depends only on these nodes. An important connection between this new result and the stability condition of D-GLDPC codes over the BEC is highlighted. Such a connection, previously observed for LDPC and GLDPC codes, is now extended to the case of D-GLDPC codes. |
doi_str_mv | 10.1109/ALLERTON.2008.4797656 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4797656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4797656</ieee_id><sourcerecordid>4797656</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-2b97b4d700e2b55c0468b597fd8cd8f7e0e6a031ca507082baaa5cdf8ac34acf3</originalsourceid><addsrcrecordid>eNpFUN1KwzAYjchAN_cEIuQFOr-mSZNcjjmnUJzIBO9Gfr52kbpKmjHm0-t04Lk5nB_OxSHkJodJnoO-nVbV_GW1fJowADXhUstSlGdkmHPGOdOs1Of_QsCADI9FDUqw8oKM-_4dfsBFobS8JG_LLU0bpE3s9mlDo0lIu_rX2mNoNon60KcY7C6FbnuMQozY7FoTqe92tj1kDW4xmjZ8oafV3fOMus5jf0UGtWl7HJ94RF7v56vZQ1YtF4-zaZWFXIqUMaul5V4CILNCOOClskLL2ivnVS0RsDRQ5M4IkKCYNcYI52tlXMGNq4sRuf7bDYi4_ozhw8TD-nRL8Q2mP1ao</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On the growth rate of the weight distribution of irregular doubly-generalized LDPC codes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Flanagan, M.F. ; Paolini, E. ; Chiani, M. ; Fossorier, M.P.C.</creator><creatorcontrib>Flanagan, M.F. ; Paolini, E. ; Chiani, M. ; Fossorier, M.P.C.</creatorcontrib><description>In this paper, an expression for the asymptotic growth rate of the number of small linear-weight codewords of irregular doubly-generalized LDPC (D-GLDPC) codes is derived. The expression is compact and generalizes existing results for LDPC and generalized LDPC (GLDPC) codes. Assuming that there exist check and variable nodes with minimum distance 2, it is shown that the growth rate depends only on these nodes. An important connection between this new result and the stability condition of D-GLDPC codes over the BEC is highlighted. Such a connection, previously observed for LDPC and GLDPC codes, is now extended to the case of D-GLDPC codes.</description><identifier>ISBN: 1424429250</identifier><identifier>ISBN: 9781424429257</identifier><identifier>EISBN: 1424429269</identifier><identifier>EISBN: 9781424429264</identifier><identifier>DOI: 10.1109/ALLERTON.2008.4797656</identifier><identifier>LCCN: 2008908526</identifier><language>eng</language><publisher>IEEE</publisher><subject>Asymptotic stability ; Bipartite graph ; Block codes ; Channel capacity ; Communication channels ; Equations ; Iterative decoding ; Parity check codes</subject><ispartof>2008 46th Annual Allerton Conference on Communication, Control, and Computing, 2008, p.922-929</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4797656$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27916,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4797656$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Flanagan, M.F.</creatorcontrib><creatorcontrib>Paolini, E.</creatorcontrib><creatorcontrib>Chiani, M.</creatorcontrib><creatorcontrib>Fossorier, M.P.C.</creatorcontrib><title>On the growth rate of the weight distribution of irregular doubly-generalized LDPC codes</title><title>2008 46th Annual Allerton Conference on Communication, Control, and Computing</title><addtitle>ALLERTON</addtitle><description>In this paper, an expression for the asymptotic growth rate of the number of small linear-weight codewords of irregular doubly-generalized LDPC (D-GLDPC) codes is derived. The expression is compact and generalizes existing results for LDPC and generalized LDPC (GLDPC) codes. Assuming that there exist check and variable nodes with minimum distance 2, it is shown that the growth rate depends only on these nodes. An important connection between this new result and the stability condition of D-GLDPC codes over the BEC is highlighted. Such a connection, previously observed for LDPC and GLDPC codes, is now extended to the case of D-GLDPC codes.</description><subject>Asymptotic stability</subject><subject>Bipartite graph</subject><subject>Block codes</subject><subject>Channel capacity</subject><subject>Communication channels</subject><subject>Equations</subject><subject>Iterative decoding</subject><subject>Parity check codes</subject><isbn>1424429250</isbn><isbn>9781424429257</isbn><isbn>1424429269</isbn><isbn>9781424429264</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUN1KwzAYjchAN_cEIuQFOr-mSZNcjjmnUJzIBO9Gfr52kbpKmjHm0-t04Lk5nB_OxSHkJodJnoO-nVbV_GW1fJowADXhUstSlGdkmHPGOdOs1Of_QsCADI9FDUqw8oKM-_4dfsBFobS8JG_LLU0bpE3s9mlDo0lIu_rX2mNoNon60KcY7C6FbnuMQozY7FoTqe92tj1kDW4xmjZ8oafV3fOMus5jf0UGtWl7HJ94RF7v56vZQ1YtF4-zaZWFXIqUMaul5V4CILNCOOClskLL2ivnVS0RsDRQ5M4IkKCYNcYI52tlXMGNq4sRuf7bDYi4_ozhw8TD-nRL8Q2mP1ao</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Flanagan, M.F.</creator><creator>Paolini, E.</creator><creator>Chiani, M.</creator><creator>Fossorier, M.P.C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>On the growth rate of the weight distribution of irregular doubly-generalized LDPC codes</title><author>Flanagan, M.F. ; Paolini, E. ; Chiani, M. ; Fossorier, M.P.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-2b97b4d700e2b55c0468b597fd8cd8f7e0e6a031ca507082baaa5cdf8ac34acf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Asymptotic stability</topic><topic>Bipartite graph</topic><topic>Block codes</topic><topic>Channel capacity</topic><topic>Communication channels</topic><topic>Equations</topic><topic>Iterative decoding</topic><topic>Parity check codes</topic><toplevel>online_resources</toplevel><creatorcontrib>Flanagan, M.F.</creatorcontrib><creatorcontrib>Paolini, E.</creatorcontrib><creatorcontrib>Chiani, M.</creatorcontrib><creatorcontrib>Fossorier, M.P.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Flanagan, M.F.</au><au>Paolini, E.</au><au>Chiani, M.</au><au>Fossorier, M.P.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On the growth rate of the weight distribution of irregular doubly-generalized LDPC codes</atitle><btitle>2008 46th Annual Allerton Conference on Communication, Control, and Computing</btitle><stitle>ALLERTON</stitle><date>2008-09</date><risdate>2008</risdate><spage>922</spage><epage>929</epage><pages>922-929</pages><isbn>1424429250</isbn><isbn>9781424429257</isbn><eisbn>1424429269</eisbn><eisbn>9781424429264</eisbn><abstract>In this paper, an expression for the asymptotic growth rate of the number of small linear-weight codewords of irregular doubly-generalized LDPC (D-GLDPC) codes is derived. The expression is compact and generalizes existing results for LDPC and generalized LDPC (GLDPC) codes. Assuming that there exist check and variable nodes with minimum distance 2, it is shown that the growth rate depends only on these nodes. An important connection between this new result and the stability condition of D-GLDPC codes over the BEC is highlighted. Such a connection, previously observed for LDPC and GLDPC codes, is now extended to the case of D-GLDPC codes.</abstract><pub>IEEE</pub><doi>10.1109/ALLERTON.2008.4797656</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424429250 |
ispartof | 2008 46th Annual Allerton Conference on Communication, Control, and Computing, 2008, p.922-929 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4797656 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Asymptotic stability Bipartite graph Block codes Channel capacity Communication channels Equations Iterative decoding Parity check codes |
title | On the growth rate of the weight distribution of irregular doubly-generalized LDPC codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20the%20growth%20rate%20of%20the%20weight%20distribution%20of%20irregular%20doubly-generalized%20LDPC%20codes&rft.btitle=2008%2046th%20Annual%20Allerton%20Conference%20on%20Communication,%20Control,%20and%20Computing&rft.au=Flanagan,%20M.F.&rft.date=2008-09&rft.spage=922&rft.epage=929&rft.pages=922-929&rft.isbn=1424429250&rft.isbn_list=9781424429257&rft_id=info:doi/10.1109/ALLERTON.2008.4797656&rft_dat=%3Cieee_6IE%3E4797656%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424429269&rft.eisbn_list=9781424429264&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4797656&rfr_iscdi=true |