Auditory scene analysis and hidden Markov model recognition of speech in noise

We describe a novel paradigm for automatic speech recognition in noisy environments in which an initial stage of auditory scene analysis separates out the evidence for the speech to be recognised from the evidence for other sounds. In general, this evidence will be incomplete, since intruding sound...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Green, P.D., Cooke, M.P., Crawford, M.D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 404 vol.1
container_issue
container_start_page 401
container_title
container_volume 1
creator Green, P.D.
Cooke, M.P.
Crawford, M.D.
description We describe a novel paradigm for automatic speech recognition in noisy environments in which an initial stage of auditory scene analysis separates out the evidence for the speech to be recognised from the evidence for other sounds. In general, this evidence will be incomplete, since intruding sound sources will dominate some spectro-temporal regions. We generalise continuous-density hidden Markov model recognition to this 'occluded speech' case. The technique is based on estimating the probability that a Gaussian mixture density distribution for an auditory firing rate map will generate an observation such that the separated components are at their observed values and the remaining components are not greater than their values in the acoustic mixture. Experiments on isolated digit recognition in noise demonstrate the potential of the new approach to yield performance comparable to that of listeners.
doi_str_mv 10.1109/ICASSP.1995.479606
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_479606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>479606</ieee_id><sourcerecordid>479606</sourcerecordid><originalsourceid>FETCH-ieee_primary_4796063</originalsourceid><addsrcrecordid>eNp9jstqAkEQAJs8wNXkBzz1D-zas-85ihiSQ0TQgzcZdtrYyTojMyrs3yeQnHOqgroUwFRRphTp2dtivtmsM6V1lZWNrqm-gyQvGp0qTbt7GFPTUpGXhaoeIFFVTmmtSj2CcYyfRNQ2ZZvAan61cvFhwNixYzTO9EOU-CMWj2ItO3w34cvf8OQt9xi48x9OLuId-gPGM3N3RHHovER-gseD6SM__3EC05fldvGaCjPvz0FOJgz7393i3_gNMMFBUw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Auditory scene analysis and hidden Markov model recognition of speech in noise</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Green, P.D. ; Cooke, M.P. ; Crawford, M.D.</creator><creatorcontrib>Green, P.D. ; Cooke, M.P. ; Crawford, M.D.</creatorcontrib><description>We describe a novel paradigm for automatic speech recognition in noisy environments in which an initial stage of auditory scene analysis separates out the evidence for the speech to be recognised from the evidence for other sounds. In general, this evidence will be incomplete, since intruding sound sources will dominate some spectro-temporal regions. We generalise continuous-density hidden Markov model recognition to this 'occluded speech' case. The technique is based on estimating the probability that a Gaussian mixture density distribution for an auditory firing rate map will generate an observation such that the separated components are at their observed values and the remaining components are not greater than their values in the acoustic mixture. Experiments on isolated digit recognition in noise demonstrate the potential of the new approach to yield performance comparable to that of listeners.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 0780324315</identifier><identifier>ISBN: 9780780324312</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.1995.479606</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic noise ; Automatic speech recognition ; Computational modeling ; Hidden Markov models ; Image analysis ; Noise robustness ; Speech analysis ; Speech enhancement ; Speech recognition ; Working environment noise</subject><ispartof>1995 International Conference on Acoustics, Speech, and Signal Processing, 1995, Vol.1, p.401-404 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/479606$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/479606$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Green, P.D.</creatorcontrib><creatorcontrib>Cooke, M.P.</creatorcontrib><creatorcontrib>Crawford, M.D.</creatorcontrib><title>Auditory scene analysis and hidden Markov model recognition of speech in noise</title><title>1995 International Conference on Acoustics, Speech, and Signal Processing</title><addtitle>ICASSP</addtitle><description>We describe a novel paradigm for automatic speech recognition in noisy environments in which an initial stage of auditory scene analysis separates out the evidence for the speech to be recognised from the evidence for other sounds. In general, this evidence will be incomplete, since intruding sound sources will dominate some spectro-temporal regions. We generalise continuous-density hidden Markov model recognition to this 'occluded speech' case. The technique is based on estimating the probability that a Gaussian mixture density distribution for an auditory firing rate map will generate an observation such that the separated components are at their observed values and the remaining components are not greater than their values in the acoustic mixture. Experiments on isolated digit recognition in noise demonstrate the potential of the new approach to yield performance comparable to that of listeners.</description><subject>Acoustic noise</subject><subject>Automatic speech recognition</subject><subject>Computational modeling</subject><subject>Hidden Markov models</subject><subject>Image analysis</subject><subject>Noise robustness</subject><subject>Speech analysis</subject><subject>Speech enhancement</subject><subject>Speech recognition</subject><subject>Working environment noise</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>0780324315</isbn><isbn>9780780324312</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jstqAkEQAJs8wNXkBzz1D-zas-85ihiSQ0TQgzcZdtrYyTojMyrs3yeQnHOqgroUwFRRphTp2dtivtmsM6V1lZWNrqm-gyQvGp0qTbt7GFPTUpGXhaoeIFFVTmmtSj2CcYyfRNQ2ZZvAan61cvFhwNixYzTO9EOU-CMWj2ItO3w34cvf8OQt9xi48x9OLuId-gPGM3N3RHHovER-gseD6SM__3EC05fldvGaCjPvz0FOJgz7393i3_gNMMFBUw</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Green, P.D.</creator><creator>Cooke, M.P.</creator><creator>Crawford, M.D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1995</creationdate><title>Auditory scene analysis and hidden Markov model recognition of speech in noise</title><author>Green, P.D. ; Cooke, M.P. ; Crawford, M.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_4796063</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Acoustic noise</topic><topic>Automatic speech recognition</topic><topic>Computational modeling</topic><topic>Hidden Markov models</topic><topic>Image analysis</topic><topic>Noise robustness</topic><topic>Speech analysis</topic><topic>Speech enhancement</topic><topic>Speech recognition</topic><topic>Working environment noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Green, P.D.</creatorcontrib><creatorcontrib>Cooke, M.P.</creatorcontrib><creatorcontrib>Crawford, M.D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Green, P.D.</au><au>Cooke, M.P.</au><au>Crawford, M.D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Auditory scene analysis and hidden Markov model recognition of speech in noise</atitle><btitle>1995 International Conference on Acoustics, Speech, and Signal Processing</btitle><stitle>ICASSP</stitle><date>1995</date><risdate>1995</risdate><volume>1</volume><spage>401</spage><epage>404 vol.1</epage><pages>401-404 vol.1</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>0780324315</isbn><isbn>9780780324312</isbn><abstract>We describe a novel paradigm for automatic speech recognition in noisy environments in which an initial stage of auditory scene analysis separates out the evidence for the speech to be recognised from the evidence for other sounds. In general, this evidence will be incomplete, since intruding sound sources will dominate some spectro-temporal regions. We generalise continuous-density hidden Markov model recognition to this 'occluded speech' case. The technique is based on estimating the probability that a Gaussian mixture density distribution for an auditory firing rate map will generate an observation such that the separated components are at their observed values and the remaining components are not greater than their values in the acoustic mixture. Experiments on isolated digit recognition in noise demonstrate the potential of the new approach to yield performance comparable to that of listeners.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.1995.479606</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 1995 International Conference on Acoustics, Speech, and Signal Processing, 1995, Vol.1, p.401-404 vol.1
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_479606
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acoustic noise
Automatic speech recognition
Computational modeling
Hidden Markov models
Image analysis
Noise robustness
Speech analysis
Speech enhancement
Speech recognition
Working environment noise
title Auditory scene analysis and hidden Markov model recognition of speech in noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Auditory%20scene%20analysis%20and%20hidden%20Markov%20model%20recognition%20of%20speech%20in%20noise&rft.btitle=1995%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing&rft.au=Green,%20P.D.&rft.date=1995&rft.volume=1&rft.spage=401&rft.epage=404%20vol.1&rft.pages=401-404%20vol.1&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=0780324315&rft.isbn_list=9780780324312&rft_id=info:doi/10.1109/ICASSP.1995.479606&rft_dat=%3Cieee_6IE%3E479606%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=479606&rfr_iscdi=true