General Structure of Time-Optimal Control of Robotic Manipulators Moving Along Prescribed Paths
This paper addresses the structure of time-optimal control of robotic manipulators along a specified geometric path subject to constraints on control torques Both regular and singular (where one or more effective inertia components are zero on any finite time interval) cases are studied by using the...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1514 |
---|---|
container_issue | |
container_start_page | 1510 |
container_title | |
container_volume | |
creator | Chen, Yaobin Chien, Stanley Y.-P. |
description | This paper addresses the structure of time-optimal control of robotic manipulators along a specified geometric path subject to constraints on control torques Both regular and singular (where one or more effective inertia components are zero on any finite time interval) cases are studied by using the Extended Pontryagin's Minimum Principle (EPMP) and a parameterization method. It is shown that the structure of the time-optimal control law requires either (a) one and only one control torque be always in saturation in every finite time interval along its optimal trajectory, while the rest of them adjust thier values so that the motion of the robot is guaranteed along the constrained path, or (b) at least one of the actuators takes on its extremal values. The first form of the control law dominates the robot motion along the optimal trajectory though the second form may exist. The theoretical results are verified by various existing numerical examples. |
doi_str_mv | 10.23919/ACC.1992.4792360 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4792360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4792360</ieee_id><sourcerecordid>4792360</sourcerecordid><originalsourceid>FETCH-LOGICAL-i88t-a618e939fb027c8425a215f6e89cd2e012336c7f727d4c4f8b85a31e839d94363</originalsourceid><addsrcrecordid>eNotUF9LwzAcDMhgOvcBxJd8gc78aZv8HkvRKWxsaN9Lmv6qka4ZaSr47a1s93AHd3AcR8gDZxshgcNTUZYbDiA2qQIhc3ZD7pjSTDLBGSzIEniSaS70kqzH8ZvNyDIFKbsl9RYHDKanHzFMNk4Bqe9o5U6YHM7Rneak9EMMvv_3333jo7N0bwZ3nnoTfRjp3v-44ZMWvZ_5GHC0wTXY0qOJX-M9WXSmH3F91RWpXp6r8jXZHbZvZbFLnNYxMTnXCBK6hglldSoyI3jW5ajBtgIZF1LmVnVKqDa1aacbnRnJUUtoIZW5XJHHS61DxPoc5uHht76-If8AJEJTpA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>General Structure of Time-Optimal Control of Robotic Manipulators Moving Along Prescribed Paths</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chen, Yaobin ; Chien, Stanley Y.-P.</creator><creatorcontrib>Chen, Yaobin ; Chien, Stanley Y.-P.</creatorcontrib><description>This paper addresses the structure of time-optimal control of robotic manipulators along a specified geometric path subject to constraints on control torques Both regular and singular (where one or more effective inertia components are zero on any finite time interval) cases are studied by using the Extended Pontryagin's Minimum Principle (EPMP) and a parameterization method. It is shown that the structure of the time-optimal control law requires either (a) one and only one control torque be always in saturation in every finite time interval along its optimal trajectory, while the rest of them adjust thier values so that the motion of the robot is guaranteed along the constrained path, or (b) at least one of the actuators takes on its extremal values. The first form of the control law dominates the robot motion along the optimal trajectory though the second form may exist. The theoretical results are verified by various existing numerical examples.</description><identifier>ISBN: 0780302109</identifier><identifier>ISBN: 9780780302105</identifier><identifier>DOI: 10.23919/ACC.1992.4792360</identifier><identifier>LCCN: 91-58128</identifier><language>eng</language><publisher>IEEE</publisher><subject>Actuators ; Control systems ; Manipulators ; Motion control ; Optimal control ; Robot control ; Robot motion ; Tellurium ; Torque control ; Velocity control</subject><ispartof>1992 American Control Conference, 1992, p.1510-1514</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4792360$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4792360$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yaobin</creatorcontrib><creatorcontrib>Chien, Stanley Y.-P.</creatorcontrib><title>General Structure of Time-Optimal Control of Robotic Manipulators Moving Along Prescribed Paths</title><title>1992 American Control Conference</title><addtitle>ACC</addtitle><description>This paper addresses the structure of time-optimal control of robotic manipulators along a specified geometric path subject to constraints on control torques Both regular and singular (where one or more effective inertia components are zero on any finite time interval) cases are studied by using the Extended Pontryagin's Minimum Principle (EPMP) and a parameterization method. It is shown that the structure of the time-optimal control law requires either (a) one and only one control torque be always in saturation in every finite time interval along its optimal trajectory, while the rest of them adjust thier values so that the motion of the robot is guaranteed along the constrained path, or (b) at least one of the actuators takes on its extremal values. The first form of the control law dominates the robot motion along the optimal trajectory though the second form may exist. The theoretical results are verified by various existing numerical examples.</description><subject>Actuators</subject><subject>Control systems</subject><subject>Manipulators</subject><subject>Motion control</subject><subject>Optimal control</subject><subject>Robot control</subject><subject>Robot motion</subject><subject>Tellurium</subject><subject>Torque control</subject><subject>Velocity control</subject><isbn>0780302109</isbn><isbn>9780780302105</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1992</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUF9LwzAcDMhgOvcBxJd8gc78aZv8HkvRKWxsaN9Lmv6qka4ZaSr47a1s93AHd3AcR8gDZxshgcNTUZYbDiA2qQIhc3ZD7pjSTDLBGSzIEniSaS70kqzH8ZvNyDIFKbsl9RYHDKanHzFMNk4Bqe9o5U6YHM7Rneak9EMMvv_3333jo7N0bwZ3nnoTfRjp3v-44ZMWvZ_5GHC0wTXY0qOJX-M9WXSmH3F91RWpXp6r8jXZHbZvZbFLnNYxMTnXCBK6hglldSoyI3jW5ajBtgIZF1LmVnVKqDa1aacbnRnJUUtoIZW5XJHHS61DxPoc5uHht76-If8AJEJTpA</recordid><startdate>199206</startdate><enddate>199206</enddate><creator>Chen, Yaobin</creator><creator>Chien, Stanley Y.-P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>199206</creationdate><title>General Structure of Time-Optimal Control of Robotic Manipulators Moving Along Prescribed Paths</title><author>Chen, Yaobin ; Chien, Stanley Y.-P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i88t-a618e939fb027c8425a215f6e89cd2e012336c7f727d4c4f8b85a31e839d94363</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Actuators</topic><topic>Control systems</topic><topic>Manipulators</topic><topic>Motion control</topic><topic>Optimal control</topic><topic>Robot control</topic><topic>Robot motion</topic><topic>Tellurium</topic><topic>Torque control</topic><topic>Velocity control</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yaobin</creatorcontrib><creatorcontrib>Chien, Stanley Y.-P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yaobin</au><au>Chien, Stanley Y.-P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>General Structure of Time-Optimal Control of Robotic Manipulators Moving Along Prescribed Paths</atitle><btitle>1992 American Control Conference</btitle><stitle>ACC</stitle><date>1992-06</date><risdate>1992</risdate><spage>1510</spage><epage>1514</epage><pages>1510-1514</pages><isbn>0780302109</isbn><isbn>9780780302105</isbn><abstract>This paper addresses the structure of time-optimal control of robotic manipulators along a specified geometric path subject to constraints on control torques Both regular and singular (where one or more effective inertia components are zero on any finite time interval) cases are studied by using the Extended Pontryagin's Minimum Principle (EPMP) and a parameterization method. It is shown that the structure of the time-optimal control law requires either (a) one and only one control torque be always in saturation in every finite time interval along its optimal trajectory, while the rest of them adjust thier values so that the motion of the robot is guaranteed along the constrained path, or (b) at least one of the actuators takes on its extremal values. The first form of the control law dominates the robot motion along the optimal trajectory though the second form may exist. The theoretical results are verified by various existing numerical examples.</abstract><pub>IEEE</pub><doi>10.23919/ACC.1992.4792360</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780302109 |
ispartof | 1992 American Control Conference, 1992, p.1510-1514 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4792360 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Actuators Control systems Manipulators Motion control Optimal control Robot control Robot motion Tellurium Torque control Velocity control |
title | General Structure of Time-Optimal Control of Robotic Manipulators Moving Along Prescribed Paths |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A39%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=General%20Structure%20of%20Time-Optimal%20Control%20of%20Robotic%20Manipulators%20Moving%20Along%20Prescribed%20Paths&rft.btitle=1992%20American%20Control%20Conference&rft.au=Chen,%20Yaobin&rft.date=1992-06&rft.spage=1510&rft.epage=1514&rft.pages=1510-1514&rft.isbn=0780302109&rft.isbn_list=9780780302105&rft_id=info:doi/10.23919/ACC.1992.4792360&rft_dat=%3Cieee_6IE%3E4792360%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4792360&rfr_iscdi=true |