General Structure of Time-Optimal Control of Robotic Manipulators Moving Along Prescribed Paths

This paper addresses the structure of time-optimal control of robotic manipulators along a specified geometric path subject to constraints on control torques Both regular and singular (where one or more effective inertia components are zero on any finite time interval) cases are studied by using the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chen, Yaobin, Chien, Stanley Y.-P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1514
container_issue
container_start_page 1510
container_title
container_volume
creator Chen, Yaobin
Chien, Stanley Y.-P.
description This paper addresses the structure of time-optimal control of robotic manipulators along a specified geometric path subject to constraints on control torques Both regular and singular (where one or more effective inertia components are zero on any finite time interval) cases are studied by using the Extended Pontryagin's Minimum Principle (EPMP) and a parameterization method. It is shown that the structure of the time-optimal control law requires either (a) one and only one control torque be always in saturation in every finite time interval along its optimal trajectory, while the rest of them adjust thier values so that the motion of the robot is guaranteed along the constrained path, or (b) at least one of the actuators takes on its extremal values. The first form of the control law dominates the robot motion along the optimal trajectory though the second form may exist. The theoretical results are verified by various existing numerical examples.
doi_str_mv 10.23919/ACC.1992.4792360
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4792360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4792360</ieee_id><sourcerecordid>4792360</sourcerecordid><originalsourceid>FETCH-LOGICAL-i88t-a618e939fb027c8425a215f6e89cd2e012336c7f727d4c4f8b85a31e839d94363</originalsourceid><addsrcrecordid>eNotUF9LwzAcDMhgOvcBxJd8gc78aZv8HkvRKWxsaN9Lmv6qka4ZaSr47a1s93AHd3AcR8gDZxshgcNTUZYbDiA2qQIhc3ZD7pjSTDLBGSzIEniSaS70kqzH8ZvNyDIFKbsl9RYHDKanHzFMNk4Bqe9o5U6YHM7Rneak9EMMvv_3333jo7N0bwZ3nnoTfRjp3v-44ZMWvZ_5GHC0wTXY0qOJX-M9WXSmH3F91RWpXp6r8jXZHbZvZbFLnNYxMTnXCBK6hglldSoyI3jW5ajBtgIZF1LmVnVKqDa1aacbnRnJUUtoIZW5XJHHS61DxPoc5uHht76-If8AJEJTpA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>General Structure of Time-Optimal Control of Robotic Manipulators Moving Along Prescribed Paths</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chen, Yaobin ; Chien, Stanley Y.-P.</creator><creatorcontrib>Chen, Yaobin ; Chien, Stanley Y.-P.</creatorcontrib><description>This paper addresses the structure of time-optimal control of robotic manipulators along a specified geometric path subject to constraints on control torques Both regular and singular (where one or more effective inertia components are zero on any finite time interval) cases are studied by using the Extended Pontryagin's Minimum Principle (EPMP) and a parameterization method. It is shown that the structure of the time-optimal control law requires either (a) one and only one control torque be always in saturation in every finite time interval along its optimal trajectory, while the rest of them adjust thier values so that the motion of the robot is guaranteed along the constrained path, or (b) at least one of the actuators takes on its extremal values. The first form of the control law dominates the robot motion along the optimal trajectory though the second form may exist. The theoretical results are verified by various existing numerical examples.</description><identifier>ISBN: 0780302109</identifier><identifier>ISBN: 9780780302105</identifier><identifier>DOI: 10.23919/ACC.1992.4792360</identifier><identifier>LCCN: 91-58128</identifier><language>eng</language><publisher>IEEE</publisher><subject>Actuators ; Control systems ; Manipulators ; Motion control ; Optimal control ; Robot control ; Robot motion ; Tellurium ; Torque control ; Velocity control</subject><ispartof>1992 American Control Conference, 1992, p.1510-1514</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4792360$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4792360$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yaobin</creatorcontrib><creatorcontrib>Chien, Stanley Y.-P.</creatorcontrib><title>General Structure of Time-Optimal Control of Robotic Manipulators Moving Along Prescribed Paths</title><title>1992 American Control Conference</title><addtitle>ACC</addtitle><description>This paper addresses the structure of time-optimal control of robotic manipulators along a specified geometric path subject to constraints on control torques Both regular and singular (where one or more effective inertia components are zero on any finite time interval) cases are studied by using the Extended Pontryagin's Minimum Principle (EPMP) and a parameterization method. It is shown that the structure of the time-optimal control law requires either (a) one and only one control torque be always in saturation in every finite time interval along its optimal trajectory, while the rest of them adjust thier values so that the motion of the robot is guaranteed along the constrained path, or (b) at least one of the actuators takes on its extremal values. The first form of the control law dominates the robot motion along the optimal trajectory though the second form may exist. The theoretical results are verified by various existing numerical examples.</description><subject>Actuators</subject><subject>Control systems</subject><subject>Manipulators</subject><subject>Motion control</subject><subject>Optimal control</subject><subject>Robot control</subject><subject>Robot motion</subject><subject>Tellurium</subject><subject>Torque control</subject><subject>Velocity control</subject><isbn>0780302109</isbn><isbn>9780780302105</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1992</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUF9LwzAcDMhgOvcBxJd8gc78aZv8HkvRKWxsaN9Lmv6qka4ZaSr47a1s93AHd3AcR8gDZxshgcNTUZYbDiA2qQIhc3ZD7pjSTDLBGSzIEniSaS70kqzH8ZvNyDIFKbsl9RYHDKanHzFMNk4Bqe9o5U6YHM7Rneak9EMMvv_3333jo7N0bwZ3nnoTfRjp3v-44ZMWvZ_5GHC0wTXY0qOJX-M9WXSmH3F91RWpXp6r8jXZHbZvZbFLnNYxMTnXCBK6hglldSoyI3jW5ajBtgIZF1LmVnVKqDa1aacbnRnJUUtoIZW5XJHHS61DxPoc5uHht76-If8AJEJTpA</recordid><startdate>199206</startdate><enddate>199206</enddate><creator>Chen, Yaobin</creator><creator>Chien, Stanley Y.-P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>199206</creationdate><title>General Structure of Time-Optimal Control of Robotic Manipulators Moving Along Prescribed Paths</title><author>Chen, Yaobin ; Chien, Stanley Y.-P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i88t-a618e939fb027c8425a215f6e89cd2e012336c7f727d4c4f8b85a31e839d94363</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Actuators</topic><topic>Control systems</topic><topic>Manipulators</topic><topic>Motion control</topic><topic>Optimal control</topic><topic>Robot control</topic><topic>Robot motion</topic><topic>Tellurium</topic><topic>Torque control</topic><topic>Velocity control</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yaobin</creatorcontrib><creatorcontrib>Chien, Stanley Y.-P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yaobin</au><au>Chien, Stanley Y.-P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>General Structure of Time-Optimal Control of Robotic Manipulators Moving Along Prescribed Paths</atitle><btitle>1992 American Control Conference</btitle><stitle>ACC</stitle><date>1992-06</date><risdate>1992</risdate><spage>1510</spage><epage>1514</epage><pages>1510-1514</pages><isbn>0780302109</isbn><isbn>9780780302105</isbn><abstract>This paper addresses the structure of time-optimal control of robotic manipulators along a specified geometric path subject to constraints on control torques Both regular and singular (where one or more effective inertia components are zero on any finite time interval) cases are studied by using the Extended Pontryagin's Minimum Principle (EPMP) and a parameterization method. It is shown that the structure of the time-optimal control law requires either (a) one and only one control torque be always in saturation in every finite time interval along its optimal trajectory, while the rest of them adjust thier values so that the motion of the robot is guaranteed along the constrained path, or (b) at least one of the actuators takes on its extremal values. The first form of the control law dominates the robot motion along the optimal trajectory though the second form may exist. The theoretical results are verified by various existing numerical examples.</abstract><pub>IEEE</pub><doi>10.23919/ACC.1992.4792360</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780302109
ispartof 1992 American Control Conference, 1992, p.1510-1514
issn
language eng
recordid cdi_ieee_primary_4792360
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Actuators
Control systems
Manipulators
Motion control
Optimal control
Robot control
Robot motion
Tellurium
Torque control
Velocity control
title General Structure of Time-Optimal Control of Robotic Manipulators Moving Along Prescribed Paths
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A39%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=General%20Structure%20of%20Time-Optimal%20Control%20of%20Robotic%20Manipulators%20Moving%20Along%20Prescribed%20Paths&rft.btitle=1992%20American%20Control%20Conference&rft.au=Chen,%20Yaobin&rft.date=1992-06&rft.spage=1510&rft.epage=1514&rft.pages=1510-1514&rft.isbn=0780302109&rft.isbn_list=9780780302105&rft_id=info:doi/10.23919/ACC.1992.4792360&rft_dat=%3Cieee_6IE%3E4792360%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4792360&rfr_iscdi=true