Embedding Theoretical Models in Neural Networks

A novel method for incorporating constraints and default models into neural networks is presented. The method involves a parallel arrangement of a default model and a radial basis function network. The training procedure accounts for equality and inequality constraints that must be satisfied for all...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kramer, Mark A., Thompson, Michael L., Bhagat, Phiroz M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 479
container_issue
container_start_page 475
container_title
container_volume
creator Kramer, Mark A.
Thompson, Michael L.
Bhagat, Phiroz M.
description A novel method for incorporating constraints and default models into neural networks is presented. The method involves a parallel arrangement of a default model and a radial basis function network. The training procedure accounts for equality and inequality constraints that must be satisfied for all future inputs to the network. In the case of linear equality constraints and no inequality constraints, training is reduced to a quadratic problem possessing an analytical solution. The extrapolation properties of the model-based network are controllable to a greater extent than previous network models.
doi_str_mv 10.23919/ACC.1992.4792111
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4792111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4792111</ieee_id><sourcerecordid>4792111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c136t-44245fce2091cad14c732b52e7c655fd34502de53cad447e72dbd1f35f4d93fb3</originalsourceid><addsrcrecordid>eNotj81qwzAQhAUlkDbNA4Re_AJ2tLtSZB2DSX8gTS_JOdjSqlXrxEV2KX37GpK5DHwDH4wQC5AFkgW7XFdVAdZioYxFALgRd9KUkiSCtBMxtZDrErCcinnff8oxWhur5K1Ybk4Nex_P79n-g7vEQ3R1m712nts-i-dsxz9pBDsefrv01d-LSajbnufXnonD42ZfPefbt6eXar3NHdBqyJVCpYNjlBZc7UE5Q9hoZONWWgdPSkv0rGkclTJs0DceAumgvKXQ0Ew8XLyRmY_fKZ7q9He83qN_0EVC2w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Embedding Theoretical Models in Neural Networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kramer, Mark A. ; Thompson, Michael L. ; Bhagat, Phiroz M.</creator><creatorcontrib>Kramer, Mark A. ; Thompson, Michael L. ; Bhagat, Phiroz M.</creatorcontrib><description>A novel method for incorporating constraints and default models into neural networks is presented. The method involves a parallel arrangement of a default model and a radial basis function network. The training procedure accounts for equality and inequality constraints that must be satisfied for all future inputs to the network. In the case of linear equality constraints and no inequality constraints, training is reduced to a quadratic problem possessing an analytical solution. The extrapolation properties of the model-based network are controllable to a greater extent than previous network models.</description><identifier>ISBN: 0780302109</identifier><identifier>ISBN: 9780780302105</identifier><identifier>DOI: 10.23919/ACC.1992.4792111</identifier><identifier>LCCN: 91-58128</identifier><language>eng</language><publisher>IEEE</publisher><subject>Backpropagation ; Bioreactors ; Constraint theory ; Context modeling ; Extrapolation ; Intelligent networks ; Neural networks ; Nonlinear systems ; Parameter estimation ; Predictive models</subject><ispartof>1992 American Control Conference, 1992, p.475-479</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c136t-44245fce2091cad14c732b52e7c655fd34502de53cad447e72dbd1f35f4d93fb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4792111$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4792111$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kramer, Mark A.</creatorcontrib><creatorcontrib>Thompson, Michael L.</creatorcontrib><creatorcontrib>Bhagat, Phiroz M.</creatorcontrib><title>Embedding Theoretical Models in Neural Networks</title><title>1992 American Control Conference</title><addtitle>ACC</addtitle><description>A novel method for incorporating constraints and default models into neural networks is presented. The method involves a parallel arrangement of a default model and a radial basis function network. The training procedure accounts for equality and inequality constraints that must be satisfied for all future inputs to the network. In the case of linear equality constraints and no inequality constraints, training is reduced to a quadratic problem possessing an analytical solution. The extrapolation properties of the model-based network are controllable to a greater extent than previous network models.</description><subject>Backpropagation</subject><subject>Bioreactors</subject><subject>Constraint theory</subject><subject>Context modeling</subject><subject>Extrapolation</subject><subject>Intelligent networks</subject><subject>Neural networks</subject><subject>Nonlinear systems</subject><subject>Parameter estimation</subject><subject>Predictive models</subject><isbn>0780302109</isbn><isbn>9780780302105</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1992</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81qwzAQhAUlkDbNA4Re_AJ2tLtSZB2DSX8gTS_JOdjSqlXrxEV2KX37GpK5DHwDH4wQC5AFkgW7XFdVAdZioYxFALgRd9KUkiSCtBMxtZDrErCcinnff8oxWhur5K1Ybk4Nex_P79n-g7vEQ3R1m712nts-i-dsxz9pBDsefrv01d-LSajbnufXnonD42ZfPefbt6eXar3NHdBqyJVCpYNjlBZc7UE5Q9hoZONWWgdPSkv0rGkclTJs0DceAumgvKXQ0Ew8XLyRmY_fKZ7q9He83qN_0EVC2w</recordid><startdate>199206</startdate><enddate>199206</enddate><creator>Kramer, Mark A.</creator><creator>Thompson, Michael L.</creator><creator>Bhagat, Phiroz M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>199206</creationdate><title>Embedding Theoretical Models in Neural Networks</title><author>Kramer, Mark A. ; Thompson, Michael L. ; Bhagat, Phiroz M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c136t-44245fce2091cad14c732b52e7c655fd34502de53cad447e72dbd1f35f4d93fb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Backpropagation</topic><topic>Bioreactors</topic><topic>Constraint theory</topic><topic>Context modeling</topic><topic>Extrapolation</topic><topic>Intelligent networks</topic><topic>Neural networks</topic><topic>Nonlinear systems</topic><topic>Parameter estimation</topic><topic>Predictive models</topic><toplevel>online_resources</toplevel><creatorcontrib>Kramer, Mark A.</creatorcontrib><creatorcontrib>Thompson, Michael L.</creatorcontrib><creatorcontrib>Bhagat, Phiroz M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kramer, Mark A.</au><au>Thompson, Michael L.</au><au>Bhagat, Phiroz M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Embedding Theoretical Models in Neural Networks</atitle><btitle>1992 American Control Conference</btitle><stitle>ACC</stitle><date>1992-06</date><risdate>1992</risdate><spage>475</spage><epage>479</epage><pages>475-479</pages><isbn>0780302109</isbn><isbn>9780780302105</isbn><abstract>A novel method for incorporating constraints and default models into neural networks is presented. The method involves a parallel arrangement of a default model and a radial basis function network. The training procedure accounts for equality and inequality constraints that must be satisfied for all future inputs to the network. In the case of linear equality constraints and no inequality constraints, training is reduced to a quadratic problem possessing an analytical solution. The extrapolation properties of the model-based network are controllable to a greater extent than previous network models.</abstract><pub>IEEE</pub><doi>10.23919/ACC.1992.4792111</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780302109
ispartof 1992 American Control Conference, 1992, p.475-479
issn
language eng
recordid cdi_ieee_primary_4792111
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Backpropagation
Bioreactors
Constraint theory
Context modeling
Extrapolation
Intelligent networks
Neural networks
Nonlinear systems
Parameter estimation
Predictive models
title Embedding Theoretical Models in Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A34%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Embedding%20Theoretical%20Models%20in%20Neural%20Networks&rft.btitle=1992%20American%20Control%20Conference&rft.au=Kramer,%20Mark%20A.&rft.date=1992-06&rft.spage=475&rft.epage=479&rft.pages=475-479&rft.isbn=0780302109&rft.isbn_list=9780780302105&rft_id=info:doi/10.23919/ACC.1992.4792111&rft_dat=%3Cieee_6IE%3E4792111%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4792111&rfr_iscdi=true