All solutions to the positive real version of the Parrott's problem
In this paper, a new formula for all solutions Q to the matrix inequality problem herm{R+UQV/sup T/}>0 is derived. The derivation does not involve a bilinear sector transformation of the Parrott's theorem, and leads to a parameterization of all solutions Q with only one free matrix as oppose...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3623 vol.4 |
---|---|
container_issue | |
container_start_page | 3622 |
container_title | |
container_volume | 4 |
creator | Huang, C.H. Turan, L. Safonov, M.G. |
description | In this paper, a new formula for all solutions Q to the matrix inequality problem herm{R+UQV/sup T/}>0 is derived. The derivation does not involve a bilinear sector transformation of the Parrott's theorem, and leads to a parameterization of all solutions Q with only one free matrix as opposed to several matrices given in Gabinet et al. (1994) and Iwasaki et al. (1994). The other favorable property of our result is that the expression for all solutions is computationally less costly due to fewer square root and inverse operations involving lower dimensioned matrices compared to previously reported results. |
doi_str_mv | 10.1109/CDC.1995.479150 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_479150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>479150</ieee_id><sourcerecordid>479150</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-9cd91ea34d791565959ce5004415e3d8cc29eb92e2d21125e44c5789db79ea353</originalsourceid><addsrcrecordid>eNotj01LAzEURQMq2FbXgqvsXM34XiaZzFuW0apQ0IWuy3y8YiQ1QxIL_nurdXUXh3u4V4grhBIR6La9a0skMqW2hAZOxBxsA5WqG2NPxQyQsFAK63MxT-kDABqo65lol97LFPxXduEzyRxkfmc5heSy27OM3Hm555gOVIbtH3zpYgw53yQ5xdB73l2Is23nE1_-50K8re5f28di_fzw1C7XhUOrckHDSMhdpcffhbUhQwMbAK3RcDU2w6CIe1KsRoWoDGs9GNvQ2Fs61Ey1ENdHr2PmzRTdrovfm-Pf6gc7Bkir</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>All solutions to the positive real version of the Parrott's problem</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Huang, C.H. ; Turan, L. ; Safonov, M.G.</creator><creatorcontrib>Huang, C.H. ; Turan, L. ; Safonov, M.G.</creatorcontrib><description>In this paper, a new formula for all solutions Q to the matrix inequality problem herm{R+UQV/sup T/}>0 is derived. The derivation does not involve a bilinear sector transformation of the Parrott's theorem, and leads to a parameterization of all solutions Q with only one free matrix as opposed to several matrices given in Gabinet et al. (1994) and Iwasaki et al. (1994). The other favorable property of our result is that the expression for all solutions is computationally less costly due to fewer square root and inverse operations involving lower dimensioned matrices compared to previously reported results.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 0780326857</identifier><identifier>ISBN: 9780780326859</identifier><identifier>DOI: 10.1109/CDC.1995.479150</identifier><language>eng</language><publisher>IEEE Control Systems Society</publisher><subject>Linear matrix inequalities ; Robust control</subject><ispartof>Proceedings of 1995 34th IEEE Conference on Decision and Control, 1995, Vol.4, p.3622-3623 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/479150$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,4038,4039,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/479150$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, C.H.</creatorcontrib><creatorcontrib>Turan, L.</creatorcontrib><creatorcontrib>Safonov, M.G.</creatorcontrib><title>All solutions to the positive real version of the Parrott's problem</title><title>Proceedings of 1995 34th IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>In this paper, a new formula for all solutions Q to the matrix inequality problem herm{R+UQV/sup T/}>0 is derived. The derivation does not involve a bilinear sector transformation of the Parrott's theorem, and leads to a parameterization of all solutions Q with only one free matrix as opposed to several matrices given in Gabinet et al. (1994) and Iwasaki et al. (1994). The other favorable property of our result is that the expression for all solutions is computationally less costly due to fewer square root and inverse operations involving lower dimensioned matrices compared to previously reported results.</description><subject>Linear matrix inequalities</subject><subject>Robust control</subject><issn>0191-2216</issn><isbn>0780326857</isbn><isbn>9780780326859</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01LAzEURQMq2FbXgqvsXM34XiaZzFuW0apQ0IWuy3y8YiQ1QxIL_nurdXUXh3u4V4grhBIR6La9a0skMqW2hAZOxBxsA5WqG2NPxQyQsFAK63MxT-kDABqo65lol97LFPxXduEzyRxkfmc5heSy27OM3Hm555gOVIbtH3zpYgw53yQ5xdB73l2Is23nE1_-50K8re5f28di_fzw1C7XhUOrckHDSMhdpcffhbUhQwMbAK3RcDU2w6CIe1KsRoWoDGs9GNvQ2Fs61Ey1ENdHr2PmzRTdrovfm-Pf6gc7Bkir</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Huang, C.H.</creator><creator>Turan, L.</creator><creator>Safonov, M.G.</creator><general>IEEE Control Systems Society</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1995</creationdate><title>All solutions to the positive real version of the Parrott's problem</title><author>Huang, C.H. ; Turan, L. ; Safonov, M.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-9cd91ea34d791565959ce5004415e3d8cc29eb92e2d21125e44c5789db79ea353</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Linear matrix inequalities</topic><topic>Robust control</topic><toplevel>online_resources</toplevel><creatorcontrib>Huang, C.H.</creatorcontrib><creatorcontrib>Turan, L.</creatorcontrib><creatorcontrib>Safonov, M.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, C.H.</au><au>Turan, L.</au><au>Safonov, M.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>All solutions to the positive real version of the Parrott's problem</atitle><btitle>Proceedings of 1995 34th IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>1995</date><risdate>1995</risdate><volume>4</volume><spage>3622</spage><epage>3623 vol.4</epage><pages>3622-3623 vol.4</pages><issn>0191-2216</issn><isbn>0780326857</isbn><isbn>9780780326859</isbn><abstract>In this paper, a new formula for all solutions Q to the matrix inequality problem herm{R+UQV/sup T/}>0 is derived. The derivation does not involve a bilinear sector transformation of the Parrott's theorem, and leads to a parameterization of all solutions Q with only one free matrix as opposed to several matrices given in Gabinet et al. (1994) and Iwasaki et al. (1994). The other favorable property of our result is that the expression for all solutions is computationally less costly due to fewer square root and inverse operations involving lower dimensioned matrices compared to previously reported results.</abstract><pub>IEEE Control Systems Society</pub><doi>10.1109/CDC.1995.479150</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0191-2216 |
ispartof | Proceedings of 1995 34th IEEE Conference on Decision and Control, 1995, Vol.4, p.3622-3623 vol.4 |
issn | 0191-2216 |
language | eng |
recordid | cdi_ieee_primary_479150 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Linear matrix inequalities Robust control |
title | All solutions to the positive real version of the Parrott's problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=All%20solutions%20to%20the%20positive%20real%20version%20of%20the%20Parrott's%20problem&rft.btitle=Proceedings%20of%201995%2034th%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Huang,%20C.H.&rft.date=1995&rft.volume=4&rft.spage=3622&rft.epage=3623%20vol.4&rft.pages=3622-3623%20vol.4&rft.issn=0191-2216&rft.isbn=0780326857&rft.isbn_list=9780780326859&rft_id=info:doi/10.1109/CDC.1995.479150&rft_dat=%3Cieee_6IE%3E479150%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=479150&rfr_iscdi=true |