All solutions to the positive real version of the Parrott's problem

In this paper, a new formula for all solutions Q to the matrix inequality problem herm{R+UQV/sup T/}>0 is derived. The derivation does not involve a bilinear sector transformation of the Parrott's theorem, and leads to a parameterization of all solutions Q with only one free matrix as oppose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Huang, C.H., Turan, L., Safonov, M.G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3623 vol.4
container_issue
container_start_page 3622
container_title
container_volume 4
creator Huang, C.H.
Turan, L.
Safonov, M.G.
description In this paper, a new formula for all solutions Q to the matrix inequality problem herm{R+UQV/sup T/}>0 is derived. The derivation does not involve a bilinear sector transformation of the Parrott's theorem, and leads to a parameterization of all solutions Q with only one free matrix as opposed to several matrices given in Gabinet et al. (1994) and Iwasaki et al. (1994). The other favorable property of our result is that the expression for all solutions is computationally less costly due to fewer square root and inverse operations involving lower dimensioned matrices compared to previously reported results.
doi_str_mv 10.1109/CDC.1995.479150
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_479150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>479150</ieee_id><sourcerecordid>479150</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-9cd91ea34d791565959ce5004415e3d8cc29eb92e2d21125e44c5789db79ea353</originalsourceid><addsrcrecordid>eNotj01LAzEURQMq2FbXgqvsXM34XiaZzFuW0apQ0IWuy3y8YiQ1QxIL_nurdXUXh3u4V4grhBIR6La9a0skMqW2hAZOxBxsA5WqG2NPxQyQsFAK63MxT-kDABqo65lol97LFPxXduEzyRxkfmc5heSy27OM3Hm555gOVIbtH3zpYgw53yQ5xdB73l2Is23nE1_-50K8re5f28di_fzw1C7XhUOrckHDSMhdpcffhbUhQwMbAK3RcDU2w6CIe1KsRoWoDGs9GNvQ2Fs61Ey1ENdHr2PmzRTdrovfm-Pf6gc7Bkir</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>All solutions to the positive real version of the Parrott's problem</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Huang, C.H. ; Turan, L. ; Safonov, M.G.</creator><creatorcontrib>Huang, C.H. ; Turan, L. ; Safonov, M.G.</creatorcontrib><description>In this paper, a new formula for all solutions Q to the matrix inequality problem herm{R+UQV/sup T/}&gt;0 is derived. The derivation does not involve a bilinear sector transformation of the Parrott's theorem, and leads to a parameterization of all solutions Q with only one free matrix as opposed to several matrices given in Gabinet et al. (1994) and Iwasaki et al. (1994). The other favorable property of our result is that the expression for all solutions is computationally less costly due to fewer square root and inverse operations involving lower dimensioned matrices compared to previously reported results.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 0780326857</identifier><identifier>ISBN: 9780780326859</identifier><identifier>DOI: 10.1109/CDC.1995.479150</identifier><language>eng</language><publisher>IEEE Control Systems Society</publisher><subject>Linear matrix inequalities ; Robust control</subject><ispartof>Proceedings of 1995 34th IEEE Conference on Decision and Control, 1995, Vol.4, p.3622-3623 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/479150$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,4038,4039,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/479150$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, C.H.</creatorcontrib><creatorcontrib>Turan, L.</creatorcontrib><creatorcontrib>Safonov, M.G.</creatorcontrib><title>All solutions to the positive real version of the Parrott's problem</title><title>Proceedings of 1995 34th IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>In this paper, a new formula for all solutions Q to the matrix inequality problem herm{R+UQV/sup T/}&gt;0 is derived. The derivation does not involve a bilinear sector transformation of the Parrott's theorem, and leads to a parameterization of all solutions Q with only one free matrix as opposed to several matrices given in Gabinet et al. (1994) and Iwasaki et al. (1994). The other favorable property of our result is that the expression for all solutions is computationally less costly due to fewer square root and inverse operations involving lower dimensioned matrices compared to previously reported results.</description><subject>Linear matrix inequalities</subject><subject>Robust control</subject><issn>0191-2216</issn><isbn>0780326857</isbn><isbn>9780780326859</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01LAzEURQMq2FbXgqvsXM34XiaZzFuW0apQ0IWuy3y8YiQ1QxIL_nurdXUXh3u4V4grhBIR6La9a0skMqW2hAZOxBxsA5WqG2NPxQyQsFAK63MxT-kDABqo65lol97LFPxXduEzyRxkfmc5heSy27OM3Hm555gOVIbtH3zpYgw53yQ5xdB73l2Is23nE1_-50K8re5f28di_fzw1C7XhUOrckHDSMhdpcffhbUhQwMbAK3RcDU2w6CIe1KsRoWoDGs9GNvQ2Fs61Ey1ENdHr2PmzRTdrovfm-Pf6gc7Bkir</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Huang, C.H.</creator><creator>Turan, L.</creator><creator>Safonov, M.G.</creator><general>IEEE Control Systems Society</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1995</creationdate><title>All solutions to the positive real version of the Parrott's problem</title><author>Huang, C.H. ; Turan, L. ; Safonov, M.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-9cd91ea34d791565959ce5004415e3d8cc29eb92e2d21125e44c5789db79ea353</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Linear matrix inequalities</topic><topic>Robust control</topic><toplevel>online_resources</toplevel><creatorcontrib>Huang, C.H.</creatorcontrib><creatorcontrib>Turan, L.</creatorcontrib><creatorcontrib>Safonov, M.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, C.H.</au><au>Turan, L.</au><au>Safonov, M.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>All solutions to the positive real version of the Parrott's problem</atitle><btitle>Proceedings of 1995 34th IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>1995</date><risdate>1995</risdate><volume>4</volume><spage>3622</spage><epage>3623 vol.4</epage><pages>3622-3623 vol.4</pages><issn>0191-2216</issn><isbn>0780326857</isbn><isbn>9780780326859</isbn><abstract>In this paper, a new formula for all solutions Q to the matrix inequality problem herm{R+UQV/sup T/}&gt;0 is derived. The derivation does not involve a bilinear sector transformation of the Parrott's theorem, and leads to a parameterization of all solutions Q with only one free matrix as opposed to several matrices given in Gabinet et al. (1994) and Iwasaki et al. (1994). The other favorable property of our result is that the expression for all solutions is computationally less costly due to fewer square root and inverse operations involving lower dimensioned matrices compared to previously reported results.</abstract><pub>IEEE Control Systems Society</pub><doi>10.1109/CDC.1995.479150</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof Proceedings of 1995 34th IEEE Conference on Decision and Control, 1995, Vol.4, p.3622-3623 vol.4
issn 0191-2216
language eng
recordid cdi_ieee_primary_479150
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Linear matrix inequalities
Robust control
title All solutions to the positive real version of the Parrott's problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=All%20solutions%20to%20the%20positive%20real%20version%20of%20the%20Parrott's%20problem&rft.btitle=Proceedings%20of%201995%2034th%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Huang,%20C.H.&rft.date=1995&rft.volume=4&rft.spage=3622&rft.epage=3623%20vol.4&rft.pages=3622-3623%20vol.4&rft.issn=0191-2216&rft.isbn=0780326857&rft.isbn_list=9780780326859&rft_id=info:doi/10.1109/CDC.1995.479150&rft_dat=%3Cieee_6IE%3E479150%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=479150&rfr_iscdi=true