Design of Ultrahigh- Q 1-D Photonic Crystal Microcavities
Waveguide based 1-D photonic crystal (PC) microcavities in silicon-on-insulator are investigated by 2-D finite-difference time-domain method. Values up to 6.7 times10 6 for the quality factor ( Q ) are feasible if the cavities are properly designed. The factors that govern Q are analyzed in both rea...
Gespeichert in:
Veröffentlicht in: | IEEE journal of quantum electronics 2009-03, Vol.45 (3), p.233-239 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 239 |
---|---|
container_issue | 3 |
container_start_page | 233 |
container_title | IEEE journal of quantum electronics |
container_volume | 45 |
creator | Qin Chen Archbold, M.D. Allsopp, D.W.E. |
description | Waveguide based 1-D photonic crystal (PC) microcavities in silicon-on-insulator are investigated by 2-D finite-difference time-domain method. Values up to 6.7 times10 6 for the quality factor ( Q ) are feasible if the cavities are properly designed. The factors that govern Q are analyzed in both real space and momentum space. Etching down into the SiO 2 layer is found to give more than 20% improvement in Q compared to the structure in which etching is stopped at the oxide layer. Short air gap mirrors are used to reduce the vertical scattering loss. The addition to the Bragg mirrors of tapered periods optimized to produce a cavity mode with a near Gaussian shaped envelope results in a major reduction in vertical loss. A new tapered structure with varying Si block width demonstrates an ultrahigh- Q and relieves the fabrication constraints compared to the conventional air slots tapered structure. |
doi_str_mv | 10.1109/JQE.2008.2010835 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4787217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4787217</ieee_id><sourcerecordid>869848648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-227d66d3ac27ccaa2fc84ec21046b0d27c6f14430fdc342e10c0633cefa0d8833</originalsourceid><addsrcrecordid>eNo9kEtLQzEQhYMoWKt7wU12rlInjya5S-nDBxUt2HWIuUkbue2tya3Qf29Ki5sZ5nDOcPgQuqUwoBSqh9f5ZMAAdBkUNB-eoR4dDjWhivJz1AOgmlS0UpfoKufvcgqhoYeqsc9xucFtwIumS3YVlyuC55iSMf5YtV27iQ6P0j53tsFv0aXW2d_YRZ-v0UWwTfY3p91Hi-nkc_RMZu9PL6PHGXGcq44wpmopa24dU85Zy4LTwjtGQcgvqIsoQ-nCIdSOC-YpOJCcOx8s1Fpz3kf3x7_b1P7sfO7MOmbnm8ZufLvLRstKCy2FLk44OkvLnJMPZpvi2qa9oWAOkEyBZA6QzAlSidwdI9F7_28XSitGFf8DKpRhPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869848648</pqid></control><display><type>article</type><title>Design of Ultrahigh- Q 1-D Photonic Crystal Microcavities</title><source>IEEE Electronic Library (IEL)</source><creator>Qin Chen ; Archbold, M.D. ; Allsopp, D.W.E.</creator><creatorcontrib>Qin Chen ; Archbold, M.D. ; Allsopp, D.W.E.</creatorcontrib><description>Waveguide based 1-D photonic crystal (PC) microcavities in silicon-on-insulator are investigated by 2-D finite-difference time-domain method. Values up to 6.7 times10 6 for the quality factor ( Q ) are feasible if the cavities are properly designed. The factors that govern Q are analyzed in both real space and momentum space. Etching down into the SiO 2 layer is found to give more than 20% improvement in Q compared to the structure in which etching is stopped at the oxide layer. Short air gap mirrors are used to reduce the vertical scattering loss. The addition to the Bragg mirrors of tapered periods optimized to produce a cavity mode with a near Gaussian shaped envelope results in a major reduction in vertical loss. A new tapered structure with varying Si block width demonstrates an ultrahigh- Q and relieves the fabrication constraints compared to the conventional air slots tapered structure.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/JQE.2008.2010835</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electromagnetic scattering ; Envelopes ; Etching ; Filters ; Finite difference method ; Finite difference methods ; Holes ; Microcavities ; microresonators ; Mirrors ; optical resonators ; Particle scattering ; Photonic crystals ; Q -factor ; Reduction ; Scattering ; Silicon on insulator technology ; Time domain analysis</subject><ispartof>IEEE journal of quantum electronics, 2009-03, Vol.45 (3), p.233-239</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-227d66d3ac27ccaa2fc84ec21046b0d27c6f14430fdc342e10c0633cefa0d8833</citedby><cites>FETCH-LOGICAL-c337t-227d66d3ac27ccaa2fc84ec21046b0d27c6f14430fdc342e10c0633cefa0d8833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4787217$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4787217$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qin Chen</creatorcontrib><creatorcontrib>Archbold, M.D.</creatorcontrib><creatorcontrib>Allsopp, D.W.E.</creatorcontrib><title>Design of Ultrahigh- Q 1-D Photonic Crystal Microcavities</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>Waveguide based 1-D photonic crystal (PC) microcavities in silicon-on-insulator are investigated by 2-D finite-difference time-domain method. Values up to 6.7 times10 6 for the quality factor ( Q ) are feasible if the cavities are properly designed. The factors that govern Q are analyzed in both real space and momentum space. Etching down into the SiO 2 layer is found to give more than 20% improvement in Q compared to the structure in which etching is stopped at the oxide layer. Short air gap mirrors are used to reduce the vertical scattering loss. The addition to the Bragg mirrors of tapered periods optimized to produce a cavity mode with a near Gaussian shaped envelope results in a major reduction in vertical loss. A new tapered structure with varying Si block width demonstrates an ultrahigh- Q and relieves the fabrication constraints compared to the conventional air slots tapered structure.</description><subject>Electromagnetic scattering</subject><subject>Envelopes</subject><subject>Etching</subject><subject>Filters</subject><subject>Finite difference method</subject><subject>Finite difference methods</subject><subject>Holes</subject><subject>Microcavities</subject><subject>microresonators</subject><subject>Mirrors</subject><subject>optical resonators</subject><subject>Particle scattering</subject><subject>Photonic crystals</subject><subject>Q -factor</subject><subject>Reduction</subject><subject>Scattering</subject><subject>Silicon on insulator technology</subject><subject>Time domain analysis</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLQzEQhYMoWKt7wU12rlInjya5S-nDBxUt2HWIuUkbue2tya3Qf29Ki5sZ5nDOcPgQuqUwoBSqh9f5ZMAAdBkUNB-eoR4dDjWhivJz1AOgmlS0UpfoKufvcgqhoYeqsc9xucFtwIumS3YVlyuC55iSMf5YtV27iQ6P0j53tsFv0aXW2d_YRZ-v0UWwTfY3p91Hi-nkc_RMZu9PL6PHGXGcq44wpmopa24dU85Zy4LTwjtGQcgvqIsoQ-nCIdSOC-YpOJCcOx8s1Fpz3kf3x7_b1P7sfO7MOmbnm8ZufLvLRstKCy2FLk44OkvLnJMPZpvi2qa9oWAOkEyBZA6QzAlSidwdI9F7_28XSitGFf8DKpRhPA</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Qin Chen</creator><creator>Archbold, M.D.</creator><creator>Allsopp, D.W.E.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20090301</creationdate><title>Design of Ultrahigh- Q 1-D Photonic Crystal Microcavities</title><author>Qin Chen ; Archbold, M.D. ; Allsopp, D.W.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-227d66d3ac27ccaa2fc84ec21046b0d27c6f14430fdc342e10c0633cefa0d8833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Electromagnetic scattering</topic><topic>Envelopes</topic><topic>Etching</topic><topic>Filters</topic><topic>Finite difference method</topic><topic>Finite difference methods</topic><topic>Holes</topic><topic>Microcavities</topic><topic>microresonators</topic><topic>Mirrors</topic><topic>optical resonators</topic><topic>Particle scattering</topic><topic>Photonic crystals</topic><topic>Q -factor</topic><topic>Reduction</topic><topic>Scattering</topic><topic>Silicon on insulator technology</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin Chen</creatorcontrib><creatorcontrib>Archbold, M.D.</creatorcontrib><creatorcontrib>Allsopp, D.W.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qin Chen</au><au>Archbold, M.D.</au><au>Allsopp, D.W.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Ultrahigh- Q 1-D Photonic Crystal Microcavities</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2009-03-01</date><risdate>2009</risdate><volume>45</volume><issue>3</issue><spage>233</spage><epage>239</epage><pages>233-239</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>Waveguide based 1-D photonic crystal (PC) microcavities in silicon-on-insulator are investigated by 2-D finite-difference time-domain method. Values up to 6.7 times10 6 for the quality factor ( Q ) are feasible if the cavities are properly designed. The factors that govern Q are analyzed in both real space and momentum space. Etching down into the SiO 2 layer is found to give more than 20% improvement in Q compared to the structure in which etching is stopped at the oxide layer. Short air gap mirrors are used to reduce the vertical scattering loss. The addition to the Bragg mirrors of tapered periods optimized to produce a cavity mode with a near Gaussian shaped envelope results in a major reduction in vertical loss. A new tapered structure with varying Si block width demonstrates an ultrahigh- Q and relieves the fabrication constraints compared to the conventional air slots tapered structure.</abstract><pub>IEEE</pub><doi>10.1109/JQE.2008.2010835</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9197 |
ispartof | IEEE journal of quantum electronics, 2009-03, Vol.45 (3), p.233-239 |
issn | 0018-9197 1558-1713 |
language | eng |
recordid | cdi_ieee_primary_4787217 |
source | IEEE Electronic Library (IEL) |
subjects | Electromagnetic scattering Envelopes Etching Filters Finite difference method Finite difference methods Holes Microcavities microresonators Mirrors optical resonators Particle scattering Photonic crystals Q -factor Reduction Scattering Silicon on insulator technology Time domain analysis |
title | Design of Ultrahigh- Q 1-D Photonic Crystal Microcavities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Ultrahigh-%20Q%201-D%20Photonic%20Crystal%20Microcavities&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Qin%20Chen&rft.date=2009-03-01&rft.volume=45&rft.issue=3&rft.spage=233&rft.epage=239&rft.pages=233-239&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/JQE.2008.2010835&rft_dat=%3Cproquest_RIE%3E869848648%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869848648&rft_id=info:pmid/&rft_ieee_id=4787217&rfr_iscdi=true |