Design of Ultrahigh- Q 1-D Photonic Crystal Microcavities

Waveguide based 1-D photonic crystal (PC) microcavities in silicon-on-insulator are investigated by 2-D finite-difference time-domain method. Values up to 6.7 times10 6 for the quality factor ( Q ) are feasible if the cavities are properly designed. The factors that govern Q are analyzed in both rea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of quantum electronics 2009-03, Vol.45 (3), p.233-239
Hauptverfasser: Qin Chen, Archbold, M.D., Allsopp, D.W.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 239
container_issue 3
container_start_page 233
container_title IEEE journal of quantum electronics
container_volume 45
creator Qin Chen
Archbold, M.D.
Allsopp, D.W.E.
description Waveguide based 1-D photonic crystal (PC) microcavities in silicon-on-insulator are investigated by 2-D finite-difference time-domain method. Values up to 6.7 times10 6 for the quality factor ( Q ) are feasible if the cavities are properly designed. The factors that govern Q are analyzed in both real space and momentum space. Etching down into the SiO 2 layer is found to give more than 20% improvement in Q compared to the structure in which etching is stopped at the oxide layer. Short air gap mirrors are used to reduce the vertical scattering loss. The addition to the Bragg mirrors of tapered periods optimized to produce a cavity mode with a near Gaussian shaped envelope results in a major reduction in vertical loss. A new tapered structure with varying Si block width demonstrates an ultrahigh- Q and relieves the fabrication constraints compared to the conventional air slots tapered structure.
doi_str_mv 10.1109/JQE.2008.2010835
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4787217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4787217</ieee_id><sourcerecordid>869848648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-227d66d3ac27ccaa2fc84ec21046b0d27c6f14430fdc342e10c0633cefa0d8833</originalsourceid><addsrcrecordid>eNo9kEtLQzEQhYMoWKt7wU12rlInjya5S-nDBxUt2HWIuUkbue2tya3Qf29Ki5sZ5nDOcPgQuqUwoBSqh9f5ZMAAdBkUNB-eoR4dDjWhivJz1AOgmlS0UpfoKufvcgqhoYeqsc9xucFtwIumS3YVlyuC55iSMf5YtV27iQ6P0j53tsFv0aXW2d_YRZ-v0UWwTfY3p91Hi-nkc_RMZu9PL6PHGXGcq44wpmopa24dU85Zy4LTwjtGQcgvqIsoQ-nCIdSOC-YpOJCcOx8s1Fpz3kf3x7_b1P7sfO7MOmbnm8ZufLvLRstKCy2FLk44OkvLnJMPZpvi2qa9oWAOkEyBZA6QzAlSidwdI9F7_28XSitGFf8DKpRhPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869848648</pqid></control><display><type>article</type><title>Design of Ultrahigh- Q 1-D Photonic Crystal Microcavities</title><source>IEEE Electronic Library (IEL)</source><creator>Qin Chen ; Archbold, M.D. ; Allsopp, D.W.E.</creator><creatorcontrib>Qin Chen ; Archbold, M.D. ; Allsopp, D.W.E.</creatorcontrib><description>Waveguide based 1-D photonic crystal (PC) microcavities in silicon-on-insulator are investigated by 2-D finite-difference time-domain method. Values up to 6.7 times10 6 for the quality factor ( Q ) are feasible if the cavities are properly designed. The factors that govern Q are analyzed in both real space and momentum space. Etching down into the SiO 2 layer is found to give more than 20% improvement in Q compared to the structure in which etching is stopped at the oxide layer. Short air gap mirrors are used to reduce the vertical scattering loss. The addition to the Bragg mirrors of tapered periods optimized to produce a cavity mode with a near Gaussian shaped envelope results in a major reduction in vertical loss. A new tapered structure with varying Si block width demonstrates an ultrahigh- Q and relieves the fabrication constraints compared to the conventional air slots tapered structure.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/JQE.2008.2010835</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electromagnetic scattering ; Envelopes ; Etching ; Filters ; Finite difference method ; Finite difference methods ; Holes ; Microcavities ; microresonators ; Mirrors ; optical resonators ; Particle scattering ; Photonic crystals ; Q -factor ; Reduction ; Scattering ; Silicon on insulator technology ; Time domain analysis</subject><ispartof>IEEE journal of quantum electronics, 2009-03, Vol.45 (3), p.233-239</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-227d66d3ac27ccaa2fc84ec21046b0d27c6f14430fdc342e10c0633cefa0d8833</citedby><cites>FETCH-LOGICAL-c337t-227d66d3ac27ccaa2fc84ec21046b0d27c6f14430fdc342e10c0633cefa0d8833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4787217$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4787217$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qin Chen</creatorcontrib><creatorcontrib>Archbold, M.D.</creatorcontrib><creatorcontrib>Allsopp, D.W.E.</creatorcontrib><title>Design of Ultrahigh- Q 1-D Photonic Crystal Microcavities</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>Waveguide based 1-D photonic crystal (PC) microcavities in silicon-on-insulator are investigated by 2-D finite-difference time-domain method. Values up to 6.7 times10 6 for the quality factor ( Q ) are feasible if the cavities are properly designed. The factors that govern Q are analyzed in both real space and momentum space. Etching down into the SiO 2 layer is found to give more than 20% improvement in Q compared to the structure in which etching is stopped at the oxide layer. Short air gap mirrors are used to reduce the vertical scattering loss. The addition to the Bragg mirrors of tapered periods optimized to produce a cavity mode with a near Gaussian shaped envelope results in a major reduction in vertical loss. A new tapered structure with varying Si block width demonstrates an ultrahigh- Q and relieves the fabrication constraints compared to the conventional air slots tapered structure.</description><subject>Electromagnetic scattering</subject><subject>Envelopes</subject><subject>Etching</subject><subject>Filters</subject><subject>Finite difference method</subject><subject>Finite difference methods</subject><subject>Holes</subject><subject>Microcavities</subject><subject>microresonators</subject><subject>Mirrors</subject><subject>optical resonators</subject><subject>Particle scattering</subject><subject>Photonic crystals</subject><subject>Q -factor</subject><subject>Reduction</subject><subject>Scattering</subject><subject>Silicon on insulator technology</subject><subject>Time domain analysis</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLQzEQhYMoWKt7wU12rlInjya5S-nDBxUt2HWIuUkbue2tya3Qf29Ki5sZ5nDOcPgQuqUwoBSqh9f5ZMAAdBkUNB-eoR4dDjWhivJz1AOgmlS0UpfoKufvcgqhoYeqsc9xucFtwIumS3YVlyuC55iSMf5YtV27iQ6P0j53tsFv0aXW2d_YRZ-v0UWwTfY3p91Hi-nkc_RMZu9PL6PHGXGcq44wpmopa24dU85Zy4LTwjtGQcgvqIsoQ-nCIdSOC-YpOJCcOx8s1Fpz3kf3x7_b1P7sfO7MOmbnm8ZufLvLRstKCy2FLk44OkvLnJMPZpvi2qa9oWAOkEyBZA6QzAlSidwdI9F7_28XSitGFf8DKpRhPA</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Qin Chen</creator><creator>Archbold, M.D.</creator><creator>Allsopp, D.W.E.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20090301</creationdate><title>Design of Ultrahigh- Q 1-D Photonic Crystal Microcavities</title><author>Qin Chen ; Archbold, M.D. ; Allsopp, D.W.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-227d66d3ac27ccaa2fc84ec21046b0d27c6f14430fdc342e10c0633cefa0d8833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Electromagnetic scattering</topic><topic>Envelopes</topic><topic>Etching</topic><topic>Filters</topic><topic>Finite difference method</topic><topic>Finite difference methods</topic><topic>Holes</topic><topic>Microcavities</topic><topic>microresonators</topic><topic>Mirrors</topic><topic>optical resonators</topic><topic>Particle scattering</topic><topic>Photonic crystals</topic><topic>Q -factor</topic><topic>Reduction</topic><topic>Scattering</topic><topic>Silicon on insulator technology</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin Chen</creatorcontrib><creatorcontrib>Archbold, M.D.</creatorcontrib><creatorcontrib>Allsopp, D.W.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qin Chen</au><au>Archbold, M.D.</au><au>Allsopp, D.W.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Ultrahigh- Q 1-D Photonic Crystal Microcavities</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2009-03-01</date><risdate>2009</risdate><volume>45</volume><issue>3</issue><spage>233</spage><epage>239</epage><pages>233-239</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>Waveguide based 1-D photonic crystal (PC) microcavities in silicon-on-insulator are investigated by 2-D finite-difference time-domain method. Values up to 6.7 times10 6 for the quality factor ( Q ) are feasible if the cavities are properly designed. The factors that govern Q are analyzed in both real space and momentum space. Etching down into the SiO 2 layer is found to give more than 20% improvement in Q compared to the structure in which etching is stopped at the oxide layer. Short air gap mirrors are used to reduce the vertical scattering loss. The addition to the Bragg mirrors of tapered periods optimized to produce a cavity mode with a near Gaussian shaped envelope results in a major reduction in vertical loss. A new tapered structure with varying Si block width demonstrates an ultrahigh- Q and relieves the fabrication constraints compared to the conventional air slots tapered structure.</abstract><pub>IEEE</pub><doi>10.1109/JQE.2008.2010835</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9197
ispartof IEEE journal of quantum electronics, 2009-03, Vol.45 (3), p.233-239
issn 0018-9197
1558-1713
language eng
recordid cdi_ieee_primary_4787217
source IEEE Electronic Library (IEL)
subjects Electromagnetic scattering
Envelopes
Etching
Filters
Finite difference method
Finite difference methods
Holes
Microcavities
microresonators
Mirrors
optical resonators
Particle scattering
Photonic crystals
Q -factor
Reduction
Scattering
Silicon on insulator technology
Time domain analysis
title Design of Ultrahigh- Q 1-D Photonic Crystal Microcavities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Ultrahigh-%20Q%201-D%20Photonic%20Crystal%20Microcavities&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Qin%20Chen&rft.date=2009-03-01&rft.volume=45&rft.issue=3&rft.spage=233&rft.epage=239&rft.pages=233-239&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/JQE.2008.2010835&rft_dat=%3Cproquest_RIE%3E869848648%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869848648&rft_id=info:pmid/&rft_ieee_id=4787217&rfr_iscdi=true