Sharpening Dermatological Color Images in the Wavelet Domain

Tele-dermatology is becoming an important tool for early skin cancer detection in public health, but low-cost cameras tend to cause image blurring, which affect diagnosis quality. Obtaining cost-effective images with diagnosis quality is a current challenge, and this paper proposes a novel method fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in signal processing 2009-02, Vol.3 (1), p.4-13
Hauptverfasser: Jung, C.R., Scharcanski, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 1
container_start_page 4
container_title IEEE journal of selected topics in signal processing
container_volume 3
creator Jung, C.R.
Scharcanski, J.
description Tele-dermatology is becoming an important tool for early skin cancer detection in public health, but low-cost cameras tend to cause image blurring, which affect diagnosis quality. Obtaining cost-effective images with diagnosis quality is a current challenge, and this paper proposes a novel method for enhancing the local contrast of dermatological images in the wavelet domain. The distribution of squared gradient magnitudes computed through an undecimated wavelet transform is modeled as a combination of chi-squared and gamma distributions, and a posteriori probabilities are used to discriminate coefficients related to edges from those related to noise or homogeneous regions at each scale of the wavelet decomposition. Consistency across scales is used to preserve coefficients likely to be edge related in consecutive levels of the wavelet decomposition, and local directional smoothing is used to reduce residual noise. Then, a nonlinear enhancement function is applied to wavelet coefficients, so that low-contrast edge-related wavelet coefficients are increased. Our experimental results indicate that the proposed approach can effectively sharpen image details, without amplifying background noise. Preliminary validation by specialists indicate that the proposed sharpening algorithm improves the visual quality of dermatological images.
doi_str_mv 10.1109/JSTSP.2008.2011113
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4786532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4786532</ieee_id><sourcerecordid>2294842631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-99d66370ee629ea1f8b832f58f0eb2f6ec73e593ea858317325366293b5780173</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_QC-LBz1tTTL5WvAirR-VgkIrHkO6zrZb9qMmW8F_b2rFgwdzSCbwvMPMQ8gpowPGaHb1OJ1NnwecUhMvFg_skR7LBEupMGJ_WwNPhZRwSI5CWFEqtWKiR66nS-fX2JTNIhmhr13XVu2izF2VDGPlk3HtFhiSskm6JSav7gMr7JJRW7uyOSYHhasCnvy8ffJydzsbPqSTp_vx8GaS5iB1l2bZm1KgKaLiGTpWmLkBXkhTUJzzQmGuAWUG6Iw0wDRwCSqiMJfa0Pjvk8td37Vv3zcYOluXIceqcg22m2CNlpQpoWQkL_4lQUiuaZTRJ-d_wFW78U3cwhqpBdcGaIT4Dsp9G4LHwq59WTv_aRm1W-_227vderc_3mPobBcqEfE3ILSJ43H4AkG9fAs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857427830</pqid></control><display><type>article</type><title>Sharpening Dermatological Color Images in the Wavelet Domain</title><source>IEEE Electronic Library (IEL)</source><creator>Jung, C.R. ; Scharcanski, J.</creator><creatorcontrib>Jung, C.R. ; Scharcanski, J.</creatorcontrib><description>Tele-dermatology is becoming an important tool for early skin cancer detection in public health, but low-cost cameras tend to cause image blurring, which affect diagnosis quality. Obtaining cost-effective images with diagnosis quality is a current challenge, and this paper proposes a novel method for enhancing the local contrast of dermatological images in the wavelet domain. The distribution of squared gradient magnitudes computed through an undecimated wavelet transform is modeled as a combination of chi-squared and gamma distributions, and a posteriori probabilities are used to discriminate coefficients related to edges from those related to noise or homogeneous regions at each scale of the wavelet decomposition. Consistency across scales is used to preserve coefficients likely to be edge related in consecutive levels of the wavelet decomposition, and local directional smoothing is used to reduce residual noise. Then, a nonlinear enhancement function is applied to wavelet coefficients, so that low-contrast edge-related wavelet coefficients are increased. Our experimental results indicate that the proposed approach can effectively sharpen image details, without amplifying background noise. Preliminary validation by specialists indicate that the proposed sharpening algorithm improves the visual quality of dermatological images.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2008.2011113</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive image denoising ; adaptive image enhancement ; Algorithms ; Cameras ; Cancer detection ; Color ; color image processing ; Decomposition ; Diagnosis ; Distributed computing ; Image contrast ; Mathematical models ; medical imaging ; multiresolution analysis ; Noise ; Public healthcare ; Sharpening ; Skin cancer ; Smoothing methods ; Wavelet ; Wavelet coefficients ; Wavelet domain ; Wavelet transforms ; wavelets</subject><ispartof>IEEE journal of selected topics in signal processing, 2009-02, Vol.3 (1), p.4-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-99d66370ee629ea1f8b832f58f0eb2f6ec73e593ea858317325366293b5780173</citedby><cites>FETCH-LOGICAL-c357t-99d66370ee629ea1f8b832f58f0eb2f6ec73e593ea858317325366293b5780173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4786532$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4786532$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jung, C.R.</creatorcontrib><creatorcontrib>Scharcanski, J.</creatorcontrib><title>Sharpening Dermatological Color Images in the Wavelet Domain</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>Tele-dermatology is becoming an important tool for early skin cancer detection in public health, but low-cost cameras tend to cause image blurring, which affect diagnosis quality. Obtaining cost-effective images with diagnosis quality is a current challenge, and this paper proposes a novel method for enhancing the local contrast of dermatological images in the wavelet domain. The distribution of squared gradient magnitudes computed through an undecimated wavelet transform is modeled as a combination of chi-squared and gamma distributions, and a posteriori probabilities are used to discriminate coefficients related to edges from those related to noise or homogeneous regions at each scale of the wavelet decomposition. Consistency across scales is used to preserve coefficients likely to be edge related in consecutive levels of the wavelet decomposition, and local directional smoothing is used to reduce residual noise. Then, a nonlinear enhancement function is applied to wavelet coefficients, so that low-contrast edge-related wavelet coefficients are increased. Our experimental results indicate that the proposed approach can effectively sharpen image details, without amplifying background noise. Preliminary validation by specialists indicate that the proposed sharpening algorithm improves the visual quality of dermatological images.</description><subject>Adaptive image denoising</subject><subject>adaptive image enhancement</subject><subject>Algorithms</subject><subject>Cameras</subject><subject>Cancer detection</subject><subject>Color</subject><subject>color image processing</subject><subject>Decomposition</subject><subject>Diagnosis</subject><subject>Distributed computing</subject><subject>Image contrast</subject><subject>Mathematical models</subject><subject>medical imaging</subject><subject>multiresolution analysis</subject><subject>Noise</subject><subject>Public healthcare</subject><subject>Sharpening</subject><subject>Skin cancer</subject><subject>Smoothing methods</subject><subject>Wavelet</subject><subject>Wavelet coefficients</subject><subject>Wavelet domain</subject><subject>Wavelet transforms</subject><subject>wavelets</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_QC-LBz1tTTL5WvAirR-VgkIrHkO6zrZb9qMmW8F_b2rFgwdzSCbwvMPMQ8gpowPGaHb1OJ1NnwecUhMvFg_skR7LBEupMGJ_WwNPhZRwSI5CWFEqtWKiR66nS-fX2JTNIhmhr13XVu2izF2VDGPlk3HtFhiSskm6JSav7gMr7JJRW7uyOSYHhasCnvy8ffJydzsbPqSTp_vx8GaS5iB1l2bZm1KgKaLiGTpWmLkBXkhTUJzzQmGuAWUG6Iw0wDRwCSqiMJfa0Pjvk8td37Vv3zcYOluXIceqcg22m2CNlpQpoWQkL_4lQUiuaZTRJ-d_wFW78U3cwhqpBdcGaIT4Dsp9G4LHwq59WTv_aRm1W-_227vderc_3mPobBcqEfE3ILSJ43H4AkG9fAs</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Jung, C.R.</creator><creator>Scharcanski, J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20090201</creationdate><title>Sharpening Dermatological Color Images in the Wavelet Domain</title><author>Jung, C.R. ; Scharcanski, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-99d66370ee629ea1f8b832f58f0eb2f6ec73e593ea858317325366293b5780173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptive image denoising</topic><topic>adaptive image enhancement</topic><topic>Algorithms</topic><topic>Cameras</topic><topic>Cancer detection</topic><topic>Color</topic><topic>color image processing</topic><topic>Decomposition</topic><topic>Diagnosis</topic><topic>Distributed computing</topic><topic>Image contrast</topic><topic>Mathematical models</topic><topic>medical imaging</topic><topic>multiresolution analysis</topic><topic>Noise</topic><topic>Public healthcare</topic><topic>Sharpening</topic><topic>Skin cancer</topic><topic>Smoothing methods</topic><topic>Wavelet</topic><topic>Wavelet coefficients</topic><topic>Wavelet domain</topic><topic>Wavelet transforms</topic><topic>wavelets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, C.R.</creatorcontrib><creatorcontrib>Scharcanski, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jung, C.R.</au><au>Scharcanski, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sharpening Dermatological Color Images in the Wavelet Domain</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>3</volume><issue>1</issue><spage>4</spage><epage>13</epage><pages>4-13</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>Tele-dermatology is becoming an important tool for early skin cancer detection in public health, but low-cost cameras tend to cause image blurring, which affect diagnosis quality. Obtaining cost-effective images with diagnosis quality is a current challenge, and this paper proposes a novel method for enhancing the local contrast of dermatological images in the wavelet domain. The distribution of squared gradient magnitudes computed through an undecimated wavelet transform is modeled as a combination of chi-squared and gamma distributions, and a posteriori probabilities are used to discriminate coefficients related to edges from those related to noise or homogeneous regions at each scale of the wavelet decomposition. Consistency across scales is used to preserve coefficients likely to be edge related in consecutive levels of the wavelet decomposition, and local directional smoothing is used to reduce residual noise. Then, a nonlinear enhancement function is applied to wavelet coefficients, so that low-contrast edge-related wavelet coefficients are increased. Our experimental results indicate that the proposed approach can effectively sharpen image details, without amplifying background noise. Preliminary validation by specialists indicate that the proposed sharpening algorithm improves the visual quality of dermatological images.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2008.2011113</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4553
ispartof IEEE journal of selected topics in signal processing, 2009-02, Vol.3 (1), p.4-13
issn 1932-4553
1941-0484
language eng
recordid cdi_ieee_primary_4786532
source IEEE Electronic Library (IEL)
subjects Adaptive image denoising
adaptive image enhancement
Algorithms
Cameras
Cancer detection
Color
color image processing
Decomposition
Diagnosis
Distributed computing
Image contrast
Mathematical models
medical imaging
multiresolution analysis
Noise
Public healthcare
Sharpening
Skin cancer
Smoothing methods
Wavelet
Wavelet coefficients
Wavelet domain
Wavelet transforms
wavelets
title Sharpening Dermatological Color Images in the Wavelet Domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A10%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sharpening%20Dermatological%20Color%20Images%20in%20the%20Wavelet%20Domain&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Jung,%20C.R.&rft.date=2009-02-01&rft.volume=3&rft.issue=1&rft.spage=4&rft.epage=13&rft.pages=4-13&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2008.2011113&rft_dat=%3Cproquest_RIE%3E2294842631%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857427830&rft_id=info:pmid/&rft_ieee_id=4786532&rfr_iscdi=true