Sharpening Dermatological Color Images in the Wavelet Domain
Tele-dermatology is becoming an important tool for early skin cancer detection in public health, but low-cost cameras tend to cause image blurring, which affect diagnosis quality. Obtaining cost-effective images with diagnosis quality is a current challenge, and this paper proposes a novel method fo...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in signal processing 2009-02, Vol.3 (1), p.4-13 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 1 |
container_start_page | 4 |
container_title | IEEE journal of selected topics in signal processing |
container_volume | 3 |
creator | Jung, C.R. Scharcanski, J. |
description | Tele-dermatology is becoming an important tool for early skin cancer detection in public health, but low-cost cameras tend to cause image blurring, which affect diagnosis quality. Obtaining cost-effective images with diagnosis quality is a current challenge, and this paper proposes a novel method for enhancing the local contrast of dermatological images in the wavelet domain. The distribution of squared gradient magnitudes computed through an undecimated wavelet transform is modeled as a combination of chi-squared and gamma distributions, and a posteriori probabilities are used to discriminate coefficients related to edges from those related to noise or homogeneous regions at each scale of the wavelet decomposition. Consistency across scales is used to preserve coefficients likely to be edge related in consecutive levels of the wavelet decomposition, and local directional smoothing is used to reduce residual noise. Then, a nonlinear enhancement function is applied to wavelet coefficients, so that low-contrast edge-related wavelet coefficients are increased. Our experimental results indicate that the proposed approach can effectively sharpen image details, without amplifying background noise. Preliminary validation by specialists indicate that the proposed sharpening algorithm improves the visual quality of dermatological images. |
doi_str_mv | 10.1109/JSTSP.2008.2011113 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4786532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4786532</ieee_id><sourcerecordid>2294842631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-99d66370ee629ea1f8b832f58f0eb2f6ec73e593ea858317325366293b5780173</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_QC-LBz1tTTL5WvAirR-VgkIrHkO6zrZb9qMmW8F_b2rFgwdzSCbwvMPMQ8gpowPGaHb1OJ1NnwecUhMvFg_skR7LBEupMGJ_WwNPhZRwSI5CWFEqtWKiR66nS-fX2JTNIhmhr13XVu2izF2VDGPlk3HtFhiSskm6JSav7gMr7JJRW7uyOSYHhasCnvy8ffJydzsbPqSTp_vx8GaS5iB1l2bZm1KgKaLiGTpWmLkBXkhTUJzzQmGuAWUG6Iw0wDRwCSqiMJfa0Pjvk8td37Vv3zcYOluXIceqcg22m2CNlpQpoWQkL_4lQUiuaZTRJ-d_wFW78U3cwhqpBdcGaIT4Dsp9G4LHwq59WTv_aRm1W-_227vderc_3mPobBcqEfE3ILSJ43H4AkG9fAs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857427830</pqid></control><display><type>article</type><title>Sharpening Dermatological Color Images in the Wavelet Domain</title><source>IEEE Electronic Library (IEL)</source><creator>Jung, C.R. ; Scharcanski, J.</creator><creatorcontrib>Jung, C.R. ; Scharcanski, J.</creatorcontrib><description>Tele-dermatology is becoming an important tool for early skin cancer detection in public health, but low-cost cameras tend to cause image blurring, which affect diagnosis quality. Obtaining cost-effective images with diagnosis quality is a current challenge, and this paper proposes a novel method for enhancing the local contrast of dermatological images in the wavelet domain. The distribution of squared gradient magnitudes computed through an undecimated wavelet transform is modeled as a combination of chi-squared and gamma distributions, and a posteriori probabilities are used to discriminate coefficients related to edges from those related to noise or homogeneous regions at each scale of the wavelet decomposition. Consistency across scales is used to preserve coefficients likely to be edge related in consecutive levels of the wavelet decomposition, and local directional smoothing is used to reduce residual noise. Then, a nonlinear enhancement function is applied to wavelet coefficients, so that low-contrast edge-related wavelet coefficients are increased. Our experimental results indicate that the proposed approach can effectively sharpen image details, without amplifying background noise. Preliminary validation by specialists indicate that the proposed sharpening algorithm improves the visual quality of dermatological images.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2008.2011113</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive image denoising ; adaptive image enhancement ; Algorithms ; Cameras ; Cancer detection ; Color ; color image processing ; Decomposition ; Diagnosis ; Distributed computing ; Image contrast ; Mathematical models ; medical imaging ; multiresolution analysis ; Noise ; Public healthcare ; Sharpening ; Skin cancer ; Smoothing methods ; Wavelet ; Wavelet coefficients ; Wavelet domain ; Wavelet transforms ; wavelets</subject><ispartof>IEEE journal of selected topics in signal processing, 2009-02, Vol.3 (1), p.4-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-99d66370ee629ea1f8b832f58f0eb2f6ec73e593ea858317325366293b5780173</citedby><cites>FETCH-LOGICAL-c357t-99d66370ee629ea1f8b832f58f0eb2f6ec73e593ea858317325366293b5780173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4786532$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4786532$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jung, C.R.</creatorcontrib><creatorcontrib>Scharcanski, J.</creatorcontrib><title>Sharpening Dermatological Color Images in the Wavelet Domain</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>Tele-dermatology is becoming an important tool for early skin cancer detection in public health, but low-cost cameras tend to cause image blurring, which affect diagnosis quality. Obtaining cost-effective images with diagnosis quality is a current challenge, and this paper proposes a novel method for enhancing the local contrast of dermatological images in the wavelet domain. The distribution of squared gradient magnitudes computed through an undecimated wavelet transform is modeled as a combination of chi-squared and gamma distributions, and a posteriori probabilities are used to discriminate coefficients related to edges from those related to noise or homogeneous regions at each scale of the wavelet decomposition. Consistency across scales is used to preserve coefficients likely to be edge related in consecutive levels of the wavelet decomposition, and local directional smoothing is used to reduce residual noise. Then, a nonlinear enhancement function is applied to wavelet coefficients, so that low-contrast edge-related wavelet coefficients are increased. Our experimental results indicate that the proposed approach can effectively sharpen image details, without amplifying background noise. Preliminary validation by specialists indicate that the proposed sharpening algorithm improves the visual quality of dermatological images.</description><subject>Adaptive image denoising</subject><subject>adaptive image enhancement</subject><subject>Algorithms</subject><subject>Cameras</subject><subject>Cancer detection</subject><subject>Color</subject><subject>color image processing</subject><subject>Decomposition</subject><subject>Diagnosis</subject><subject>Distributed computing</subject><subject>Image contrast</subject><subject>Mathematical models</subject><subject>medical imaging</subject><subject>multiresolution analysis</subject><subject>Noise</subject><subject>Public healthcare</subject><subject>Sharpening</subject><subject>Skin cancer</subject><subject>Smoothing methods</subject><subject>Wavelet</subject><subject>Wavelet coefficients</subject><subject>Wavelet domain</subject><subject>Wavelet transforms</subject><subject>wavelets</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_QC-LBz1tTTL5WvAirR-VgkIrHkO6zrZb9qMmW8F_b2rFgwdzSCbwvMPMQ8gpowPGaHb1OJ1NnwecUhMvFg_skR7LBEupMGJ_WwNPhZRwSI5CWFEqtWKiR66nS-fX2JTNIhmhr13XVu2izF2VDGPlk3HtFhiSskm6JSav7gMr7JJRW7uyOSYHhasCnvy8ffJydzsbPqSTp_vx8GaS5iB1l2bZm1KgKaLiGTpWmLkBXkhTUJzzQmGuAWUG6Iw0wDRwCSqiMJfa0Pjvk8td37Vv3zcYOluXIceqcg22m2CNlpQpoWQkL_4lQUiuaZTRJ-d_wFW78U3cwhqpBdcGaIT4Dsp9G4LHwq59WTv_aRm1W-_227vderc_3mPobBcqEfE3ILSJ43H4AkG9fAs</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Jung, C.R.</creator><creator>Scharcanski, J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20090201</creationdate><title>Sharpening Dermatological Color Images in the Wavelet Domain</title><author>Jung, C.R. ; Scharcanski, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-99d66370ee629ea1f8b832f58f0eb2f6ec73e593ea858317325366293b5780173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptive image denoising</topic><topic>adaptive image enhancement</topic><topic>Algorithms</topic><topic>Cameras</topic><topic>Cancer detection</topic><topic>Color</topic><topic>color image processing</topic><topic>Decomposition</topic><topic>Diagnosis</topic><topic>Distributed computing</topic><topic>Image contrast</topic><topic>Mathematical models</topic><topic>medical imaging</topic><topic>multiresolution analysis</topic><topic>Noise</topic><topic>Public healthcare</topic><topic>Sharpening</topic><topic>Skin cancer</topic><topic>Smoothing methods</topic><topic>Wavelet</topic><topic>Wavelet coefficients</topic><topic>Wavelet domain</topic><topic>Wavelet transforms</topic><topic>wavelets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, C.R.</creatorcontrib><creatorcontrib>Scharcanski, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jung, C.R.</au><au>Scharcanski, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sharpening Dermatological Color Images in the Wavelet Domain</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>3</volume><issue>1</issue><spage>4</spage><epage>13</epage><pages>4-13</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>Tele-dermatology is becoming an important tool for early skin cancer detection in public health, but low-cost cameras tend to cause image blurring, which affect diagnosis quality. Obtaining cost-effective images with diagnosis quality is a current challenge, and this paper proposes a novel method for enhancing the local contrast of dermatological images in the wavelet domain. The distribution of squared gradient magnitudes computed through an undecimated wavelet transform is modeled as a combination of chi-squared and gamma distributions, and a posteriori probabilities are used to discriminate coefficients related to edges from those related to noise or homogeneous regions at each scale of the wavelet decomposition. Consistency across scales is used to preserve coefficients likely to be edge related in consecutive levels of the wavelet decomposition, and local directional smoothing is used to reduce residual noise. Then, a nonlinear enhancement function is applied to wavelet coefficients, so that low-contrast edge-related wavelet coefficients are increased. Our experimental results indicate that the proposed approach can effectively sharpen image details, without amplifying background noise. Preliminary validation by specialists indicate that the proposed sharpening algorithm improves the visual quality of dermatological images.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2008.2011113</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4553 |
ispartof | IEEE journal of selected topics in signal processing, 2009-02, Vol.3 (1), p.4-13 |
issn | 1932-4553 1941-0484 |
language | eng |
recordid | cdi_ieee_primary_4786532 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive image denoising adaptive image enhancement Algorithms Cameras Cancer detection Color color image processing Decomposition Diagnosis Distributed computing Image contrast Mathematical models medical imaging multiresolution analysis Noise Public healthcare Sharpening Skin cancer Smoothing methods Wavelet Wavelet coefficients Wavelet domain Wavelet transforms wavelets |
title | Sharpening Dermatological Color Images in the Wavelet Domain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A10%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sharpening%20Dermatological%20Color%20Images%20in%20the%20Wavelet%20Domain&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Jung,%20C.R.&rft.date=2009-02-01&rft.volume=3&rft.issue=1&rft.spage=4&rft.epage=13&rft.pages=4-13&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2008.2011113&rft_dat=%3Cproquest_RIE%3E2294842631%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857427830&rft_id=info:pmid/&rft_ieee_id=4786532&rfr_iscdi=true |