One-Class Collaborative Filtering

Many applications of collaborative filtering (CF), such as news item recommendation and bookmark recommendation, are most naturally thought of as one-class collaborative filtering (OCCF) problems. In these problems, the training data usually consist simply of binary data reflecting a user's act...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rong Pan, Yunhong Zhou, Bin Cao, Liu, N.N., Lukose, R., Scholz, M., Qiang Yang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 511
container_issue
container_start_page 502
container_title
container_volume
creator Rong Pan
Yunhong Zhou
Bin Cao
Liu, N.N.
Lukose, R.
Scholz, M.
Qiang Yang
description Many applications of collaborative filtering (CF), such as news item recommendation and bookmark recommendation, are most naturally thought of as one-class collaborative filtering (OCCF) problems. In these problems, the training data usually consist simply of binary data reflecting a user's action or inaction, such as page visitation in the case of news item recommendation or webpage bookmarking in the bookmarking scenario. Usually this kind of data are extremely sparse (a small fraction are positive examples), therefore ambiguity arises in the interpretation of the non-positive examples. Negative examples and unlabeled positive examples are mixed together and we are typically unable to distinguish them. For example, we cannot really attribute a user not bookmarking a page to a lack of interest or lack of awareness of the page. Previous research addressing this one-class problem only considered it as a classification task. In this paper, we consider the one-class problem under the CF setting. We propose two frameworks to tackle OCCF. One is based on weighted low rank approximation; the other is based on negative example sampling. The experimental results show that our approaches significantly outperform the baselines.
doi_str_mv 10.1109/ICDM.2008.16
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4781145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4781145</ieee_id><sourcerecordid>4781145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-e197b566b2c33494192e11fffc711c69db401d780e156fe41adda9f46188c5563</originalsourceid><addsrcrecordid>eNotzstKAzEUgOHgBZxWd-7c1AfI9JxcTpKljFYLLd0ouCuZzIlExlZmBsG3V9DVv_v4hbhGqBEhLNfN_bZWAL5GOhGV0s5Ibzydihk4ClZbUK9nokJrQRrn6ULMxvEdQBNpqMTt7sCy6eM4Lppj38f2OMSpfPFiVfqJh3J4uxTnOfYjX_13Ll5WD8_Nk9zsHtfN3UYmFcIkGYNrLVGrktYmGAyKEXPOySEmCl1rADvngdFSZoOx62LIhtD7ZC3pubj5cwsz7z-H8hGH7_3vMqKx-gccsj27</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>One-Class Collaborative Filtering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rong Pan ; Yunhong Zhou ; Bin Cao ; Liu, N.N. ; Lukose, R. ; Scholz, M. ; Qiang Yang</creator><creatorcontrib>Rong Pan ; Yunhong Zhou ; Bin Cao ; Liu, N.N. ; Lukose, R. ; Scholz, M. ; Qiang Yang</creatorcontrib><description>Many applications of collaborative filtering (CF), such as news item recommendation and bookmark recommendation, are most naturally thought of as one-class collaborative filtering (OCCF) problems. In these problems, the training data usually consist simply of binary data reflecting a user's action or inaction, such as page visitation in the case of news item recommendation or webpage bookmarking in the bookmarking scenario. Usually this kind of data are extremely sparse (a small fraction are positive examples), therefore ambiguity arises in the interpretation of the non-positive examples. Negative examples and unlabeled positive examples are mixed together and we are typically unable to distinguish them. For example, we cannot really attribute a user not bookmarking a page to a lack of interest or lack of awareness of the page. Previous research addressing this one-class problem only considered it as a classification task. In this paper, we consider the one-class problem under the CF setting. We propose two frameworks to tackle OCCF. One is based on weighted low rank approximation; the other is based on negative example sampling. The experimental results show that our approaches significantly outperform the baselines.</description><identifier>ISSN: 1550-4786</identifier><identifier>ISBN: 076953502X</identifier><identifier>ISBN: 9780769535029</identifier><identifier>EISSN: 2374-8486</identifier><identifier>DOI: 10.1109/ICDM.2008.16</identifier><language>eng</language><publisher>IEEE</publisher><subject>Alternating Least Squares ; Collaborative Filtering ; Data mining ; Filtering ; Fuels ; History ; International collaboration ; Low-Rank Approximations ; Milling machines ; One-Class ; Rockets ; Sampling methods ; Training data</subject><ispartof>2008 Eighth IEEE International Conference on Data Mining, 2008, p.502-511</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-e197b566b2c33494192e11fffc711c69db401d780e156fe41adda9f46188c5563</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4781145$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4781145$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rong Pan</creatorcontrib><creatorcontrib>Yunhong Zhou</creatorcontrib><creatorcontrib>Bin Cao</creatorcontrib><creatorcontrib>Liu, N.N.</creatorcontrib><creatorcontrib>Lukose, R.</creatorcontrib><creatorcontrib>Scholz, M.</creatorcontrib><creatorcontrib>Qiang Yang</creatorcontrib><title>One-Class Collaborative Filtering</title><title>2008 Eighth IEEE International Conference on Data Mining</title><addtitle>ICDM</addtitle><description>Many applications of collaborative filtering (CF), such as news item recommendation and bookmark recommendation, are most naturally thought of as one-class collaborative filtering (OCCF) problems. In these problems, the training data usually consist simply of binary data reflecting a user's action or inaction, such as page visitation in the case of news item recommendation or webpage bookmarking in the bookmarking scenario. Usually this kind of data are extremely sparse (a small fraction are positive examples), therefore ambiguity arises in the interpretation of the non-positive examples. Negative examples and unlabeled positive examples are mixed together and we are typically unable to distinguish them. For example, we cannot really attribute a user not bookmarking a page to a lack of interest or lack of awareness of the page. Previous research addressing this one-class problem only considered it as a classification task. In this paper, we consider the one-class problem under the CF setting. We propose two frameworks to tackle OCCF. One is based on weighted low rank approximation; the other is based on negative example sampling. The experimental results show that our approaches significantly outperform the baselines.</description><subject>Alternating Least Squares</subject><subject>Collaborative Filtering</subject><subject>Data mining</subject><subject>Filtering</subject><subject>Fuels</subject><subject>History</subject><subject>International collaboration</subject><subject>Low-Rank Approximations</subject><subject>Milling machines</subject><subject>One-Class</subject><subject>Rockets</subject><subject>Sampling methods</subject><subject>Training data</subject><issn>1550-4786</issn><issn>2374-8486</issn><isbn>076953502X</isbn><isbn>9780769535029</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzstKAzEUgOHgBZxWd-7c1AfI9JxcTpKljFYLLd0ouCuZzIlExlZmBsG3V9DVv_v4hbhGqBEhLNfN_bZWAL5GOhGV0s5Ibzydihk4ClZbUK9nokJrQRrn6ULMxvEdQBNpqMTt7sCy6eM4Lppj38f2OMSpfPFiVfqJh3J4uxTnOfYjX_13Ll5WD8_Nk9zsHtfN3UYmFcIkGYNrLVGrktYmGAyKEXPOySEmCl1rADvngdFSZoOx62LIhtD7ZC3pubj5cwsz7z-H8hGH7_3vMqKx-gccsj27</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Rong Pan</creator><creator>Yunhong Zhou</creator><creator>Bin Cao</creator><creator>Liu, N.N.</creator><creator>Lukose, R.</creator><creator>Scholz, M.</creator><creator>Qiang Yang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>One-Class Collaborative Filtering</title><author>Rong Pan ; Yunhong Zhou ; Bin Cao ; Liu, N.N. ; Lukose, R. ; Scholz, M. ; Qiang Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-e197b566b2c33494192e11fffc711c69db401d780e156fe41adda9f46188c5563</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alternating Least Squares</topic><topic>Collaborative Filtering</topic><topic>Data mining</topic><topic>Filtering</topic><topic>Fuels</topic><topic>History</topic><topic>International collaboration</topic><topic>Low-Rank Approximations</topic><topic>Milling machines</topic><topic>One-Class</topic><topic>Rockets</topic><topic>Sampling methods</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Rong Pan</creatorcontrib><creatorcontrib>Yunhong Zhou</creatorcontrib><creatorcontrib>Bin Cao</creatorcontrib><creatorcontrib>Liu, N.N.</creatorcontrib><creatorcontrib>Lukose, R.</creatorcontrib><creatorcontrib>Scholz, M.</creatorcontrib><creatorcontrib>Qiang Yang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rong Pan</au><au>Yunhong Zhou</au><au>Bin Cao</au><au>Liu, N.N.</au><au>Lukose, R.</au><au>Scholz, M.</au><au>Qiang Yang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>One-Class Collaborative Filtering</atitle><btitle>2008 Eighth IEEE International Conference on Data Mining</btitle><stitle>ICDM</stitle><date>2008-12</date><risdate>2008</risdate><spage>502</spage><epage>511</epage><pages>502-511</pages><issn>1550-4786</issn><eissn>2374-8486</eissn><isbn>076953502X</isbn><isbn>9780769535029</isbn><abstract>Many applications of collaborative filtering (CF), such as news item recommendation and bookmark recommendation, are most naturally thought of as one-class collaborative filtering (OCCF) problems. In these problems, the training data usually consist simply of binary data reflecting a user's action or inaction, such as page visitation in the case of news item recommendation or webpage bookmarking in the bookmarking scenario. Usually this kind of data are extremely sparse (a small fraction are positive examples), therefore ambiguity arises in the interpretation of the non-positive examples. Negative examples and unlabeled positive examples are mixed together and we are typically unable to distinguish them. For example, we cannot really attribute a user not bookmarking a page to a lack of interest or lack of awareness of the page. Previous research addressing this one-class problem only considered it as a classification task. In this paper, we consider the one-class problem under the CF setting. We propose two frameworks to tackle OCCF. One is based on weighted low rank approximation; the other is based on negative example sampling. The experimental results show that our approaches significantly outperform the baselines.</abstract><pub>IEEE</pub><doi>10.1109/ICDM.2008.16</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-4786
ispartof 2008 Eighth IEEE International Conference on Data Mining, 2008, p.502-511
issn 1550-4786
2374-8486
language eng
recordid cdi_ieee_primary_4781145
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Alternating Least Squares
Collaborative Filtering
Data mining
Filtering
Fuels
History
International collaboration
Low-Rank Approximations
Milling machines
One-Class
Rockets
Sampling methods
Training data
title One-Class Collaborative Filtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A23%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=One-Class%20Collaborative%20Filtering&rft.btitle=2008%20Eighth%20IEEE%20International%20Conference%20on%20Data%20Mining&rft.au=Rong%20Pan&rft.date=2008-12&rft.spage=502&rft.epage=511&rft.pages=502-511&rft.issn=1550-4786&rft.eissn=2374-8486&rft.isbn=076953502X&rft.isbn_list=9780769535029&rft_id=info:doi/10.1109/ICDM.2008.16&rft_dat=%3Cieee_6IE%3E4781145%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4781145&rfr_iscdi=true