One-Class Collaborative Filtering
Many applications of collaborative filtering (CF), such as news item recommendation and bookmark recommendation, are most naturally thought of as one-class collaborative filtering (OCCF) problems. In these problems, the training data usually consist simply of binary data reflecting a user's act...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 511 |
---|---|
container_issue | |
container_start_page | 502 |
container_title | |
container_volume | |
creator | Rong Pan Yunhong Zhou Bin Cao Liu, N.N. Lukose, R. Scholz, M. Qiang Yang |
description | Many applications of collaborative filtering (CF), such as news item recommendation and bookmark recommendation, are most naturally thought of as one-class collaborative filtering (OCCF) problems. In these problems, the training data usually consist simply of binary data reflecting a user's action or inaction, such as page visitation in the case of news item recommendation or webpage bookmarking in the bookmarking scenario. Usually this kind of data are extremely sparse (a small fraction are positive examples), therefore ambiguity arises in the interpretation of the non-positive examples. Negative examples and unlabeled positive examples are mixed together and we are typically unable to distinguish them. For example, we cannot really attribute a user not bookmarking a page to a lack of interest or lack of awareness of the page. Previous research addressing this one-class problem only considered it as a classification task. In this paper, we consider the one-class problem under the CF setting. We propose two frameworks to tackle OCCF. One is based on weighted low rank approximation; the other is based on negative example sampling. The experimental results show that our approaches significantly outperform the baselines. |
doi_str_mv | 10.1109/ICDM.2008.16 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4781145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4781145</ieee_id><sourcerecordid>4781145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-e197b566b2c33494192e11fffc711c69db401d780e156fe41adda9f46188c5563</originalsourceid><addsrcrecordid>eNotzstKAzEUgOHgBZxWd-7c1AfI9JxcTpKljFYLLd0ouCuZzIlExlZmBsG3V9DVv_v4hbhGqBEhLNfN_bZWAL5GOhGV0s5Ibzydihk4ClZbUK9nokJrQRrn6ULMxvEdQBNpqMTt7sCy6eM4Lppj38f2OMSpfPFiVfqJh3J4uxTnOfYjX_13Ll5WD8_Nk9zsHtfN3UYmFcIkGYNrLVGrktYmGAyKEXPOySEmCl1rADvngdFSZoOx62LIhtD7ZC3pubj5cwsz7z-H8hGH7_3vMqKx-gccsj27</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>One-Class Collaborative Filtering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rong Pan ; Yunhong Zhou ; Bin Cao ; Liu, N.N. ; Lukose, R. ; Scholz, M. ; Qiang Yang</creator><creatorcontrib>Rong Pan ; Yunhong Zhou ; Bin Cao ; Liu, N.N. ; Lukose, R. ; Scholz, M. ; Qiang Yang</creatorcontrib><description>Many applications of collaborative filtering (CF), such as news item recommendation and bookmark recommendation, are most naturally thought of as one-class collaborative filtering (OCCF) problems. In these problems, the training data usually consist simply of binary data reflecting a user's action or inaction, such as page visitation in the case of news item recommendation or webpage bookmarking in the bookmarking scenario. Usually this kind of data are extremely sparse (a small fraction are positive examples), therefore ambiguity arises in the interpretation of the non-positive examples. Negative examples and unlabeled positive examples are mixed together and we are typically unable to distinguish them. For example, we cannot really attribute a user not bookmarking a page to a lack of interest or lack of awareness of the page. Previous research addressing this one-class problem only considered it as a classification task. In this paper, we consider the one-class problem under the CF setting. We propose two frameworks to tackle OCCF. One is based on weighted low rank approximation; the other is based on negative example sampling. The experimental results show that our approaches significantly outperform the baselines.</description><identifier>ISSN: 1550-4786</identifier><identifier>ISBN: 076953502X</identifier><identifier>ISBN: 9780769535029</identifier><identifier>EISSN: 2374-8486</identifier><identifier>DOI: 10.1109/ICDM.2008.16</identifier><language>eng</language><publisher>IEEE</publisher><subject>Alternating Least Squares ; Collaborative Filtering ; Data mining ; Filtering ; Fuels ; History ; International collaboration ; Low-Rank Approximations ; Milling machines ; One-Class ; Rockets ; Sampling methods ; Training data</subject><ispartof>2008 Eighth IEEE International Conference on Data Mining, 2008, p.502-511</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-e197b566b2c33494192e11fffc711c69db401d780e156fe41adda9f46188c5563</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4781145$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4781145$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rong Pan</creatorcontrib><creatorcontrib>Yunhong Zhou</creatorcontrib><creatorcontrib>Bin Cao</creatorcontrib><creatorcontrib>Liu, N.N.</creatorcontrib><creatorcontrib>Lukose, R.</creatorcontrib><creatorcontrib>Scholz, M.</creatorcontrib><creatorcontrib>Qiang Yang</creatorcontrib><title>One-Class Collaborative Filtering</title><title>2008 Eighth IEEE International Conference on Data Mining</title><addtitle>ICDM</addtitle><description>Many applications of collaborative filtering (CF), such as news item recommendation and bookmark recommendation, are most naturally thought of as one-class collaborative filtering (OCCF) problems. In these problems, the training data usually consist simply of binary data reflecting a user's action or inaction, such as page visitation in the case of news item recommendation or webpage bookmarking in the bookmarking scenario. Usually this kind of data are extremely sparse (a small fraction are positive examples), therefore ambiguity arises in the interpretation of the non-positive examples. Negative examples and unlabeled positive examples are mixed together and we are typically unable to distinguish them. For example, we cannot really attribute a user not bookmarking a page to a lack of interest or lack of awareness of the page. Previous research addressing this one-class problem only considered it as a classification task. In this paper, we consider the one-class problem under the CF setting. We propose two frameworks to tackle OCCF. One is based on weighted low rank approximation; the other is based on negative example sampling. The experimental results show that our approaches significantly outperform the baselines.</description><subject>Alternating Least Squares</subject><subject>Collaborative Filtering</subject><subject>Data mining</subject><subject>Filtering</subject><subject>Fuels</subject><subject>History</subject><subject>International collaboration</subject><subject>Low-Rank Approximations</subject><subject>Milling machines</subject><subject>One-Class</subject><subject>Rockets</subject><subject>Sampling methods</subject><subject>Training data</subject><issn>1550-4786</issn><issn>2374-8486</issn><isbn>076953502X</isbn><isbn>9780769535029</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzstKAzEUgOHgBZxWd-7c1AfI9JxcTpKljFYLLd0ouCuZzIlExlZmBsG3V9DVv_v4hbhGqBEhLNfN_bZWAL5GOhGV0s5Ibzydihk4ClZbUK9nokJrQRrn6ULMxvEdQBNpqMTt7sCy6eM4Lppj38f2OMSpfPFiVfqJh3J4uxTnOfYjX_13Ll5WD8_Nk9zsHtfN3UYmFcIkGYNrLVGrktYmGAyKEXPOySEmCl1rADvngdFSZoOx62LIhtD7ZC3pubj5cwsz7z-H8hGH7_3vMqKx-gccsj27</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Rong Pan</creator><creator>Yunhong Zhou</creator><creator>Bin Cao</creator><creator>Liu, N.N.</creator><creator>Lukose, R.</creator><creator>Scholz, M.</creator><creator>Qiang Yang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>One-Class Collaborative Filtering</title><author>Rong Pan ; Yunhong Zhou ; Bin Cao ; Liu, N.N. ; Lukose, R. ; Scholz, M. ; Qiang Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-e197b566b2c33494192e11fffc711c69db401d780e156fe41adda9f46188c5563</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alternating Least Squares</topic><topic>Collaborative Filtering</topic><topic>Data mining</topic><topic>Filtering</topic><topic>Fuels</topic><topic>History</topic><topic>International collaboration</topic><topic>Low-Rank Approximations</topic><topic>Milling machines</topic><topic>One-Class</topic><topic>Rockets</topic><topic>Sampling methods</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Rong Pan</creatorcontrib><creatorcontrib>Yunhong Zhou</creatorcontrib><creatorcontrib>Bin Cao</creatorcontrib><creatorcontrib>Liu, N.N.</creatorcontrib><creatorcontrib>Lukose, R.</creatorcontrib><creatorcontrib>Scholz, M.</creatorcontrib><creatorcontrib>Qiang Yang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rong Pan</au><au>Yunhong Zhou</au><au>Bin Cao</au><au>Liu, N.N.</au><au>Lukose, R.</au><au>Scholz, M.</au><au>Qiang Yang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>One-Class Collaborative Filtering</atitle><btitle>2008 Eighth IEEE International Conference on Data Mining</btitle><stitle>ICDM</stitle><date>2008-12</date><risdate>2008</risdate><spage>502</spage><epage>511</epage><pages>502-511</pages><issn>1550-4786</issn><eissn>2374-8486</eissn><isbn>076953502X</isbn><isbn>9780769535029</isbn><abstract>Many applications of collaborative filtering (CF), such as news item recommendation and bookmark recommendation, are most naturally thought of as one-class collaborative filtering (OCCF) problems. In these problems, the training data usually consist simply of binary data reflecting a user's action or inaction, such as page visitation in the case of news item recommendation or webpage bookmarking in the bookmarking scenario. Usually this kind of data are extremely sparse (a small fraction are positive examples), therefore ambiguity arises in the interpretation of the non-positive examples. Negative examples and unlabeled positive examples are mixed together and we are typically unable to distinguish them. For example, we cannot really attribute a user not bookmarking a page to a lack of interest or lack of awareness of the page. Previous research addressing this one-class problem only considered it as a classification task. In this paper, we consider the one-class problem under the CF setting. We propose two frameworks to tackle OCCF. One is based on weighted low rank approximation; the other is based on negative example sampling. The experimental results show that our approaches significantly outperform the baselines.</abstract><pub>IEEE</pub><doi>10.1109/ICDM.2008.16</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-4786 |
ispartof | 2008 Eighth IEEE International Conference on Data Mining, 2008, p.502-511 |
issn | 1550-4786 2374-8486 |
language | eng |
recordid | cdi_ieee_primary_4781145 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Alternating Least Squares Collaborative Filtering Data mining Filtering Fuels History International collaboration Low-Rank Approximations Milling machines One-Class Rockets Sampling methods Training data |
title | One-Class Collaborative Filtering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A23%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=One-Class%20Collaborative%20Filtering&rft.btitle=2008%20Eighth%20IEEE%20International%20Conference%20on%20Data%20Mining&rft.au=Rong%20Pan&rft.date=2008-12&rft.spage=502&rft.epage=511&rft.pages=502-511&rft.issn=1550-4786&rft.eissn=2374-8486&rft.isbn=076953502X&rft.isbn_list=9780769535029&rft_id=info:doi/10.1109/ICDM.2008.16&rft_dat=%3Cieee_6IE%3E4781145%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4781145&rfr_iscdi=true |