Shortening Array Codes and the Perfect 1-Factorization Conjecture
The existence of a perfect 1-factorization of the complete graph with n nodes, namely, K n , for arbitrary even number n, is a 40-year-old open problem in graph theory. So far, two infinite families of perfect 1-factorizations have been shown to exist, namely, the factorizations of Kp+1 and K 2 p ,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2009-02, Vol.55 (2), p.507-513 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 513 |
---|---|
container_issue | 2 |
container_start_page | 507 |
container_title | IEEE transactions on information theory |
container_volume | 55 |
creator | Bohossian, V. Bruck, J. |
description | The existence of a perfect 1-factorization of the complete graph with n nodes, namely, K n , for arbitrary even number n, is a 40-year-old open problem in graph theory. So far, two infinite families of perfect 1-factorizations have been shown to exist, namely, the factorizations of Kp+1 and K 2 p , where p is an arbitrary prime number (p > 2) . It was shown in previous work that finding a perfect 1 -factorization of K n is related to a problem in coding, specifically, it can be reduced to constructing an MDS (Minimum Distance Separable), lowest density array code. In this paper, a new method for shortening arbitrary array codes is introduced. It is then used to derive the K p+1 family of perfect 1 -factorization from the K 2p family. Namely, techniques from coding theory are used to prove a new result in graph theory-that the two factorization families are related. |
doi_str_mv | 10.1109/TIT.2008.2009850 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4777647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4777647</ieee_id><sourcerecordid>1031296668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-2bddd963b33891c7dc64f2e301cf001dd63d664ad8dce75a11b9000b990fa98f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt3wcsiKF62ZpJsPo6lWC0UFKznJZtk7ZZ2o8nuof56U1p68OBlhpl55mXmRega8AgAq8fFbDEiGMtdULLAJ2gARSFyxQt2igYYg8wVY_IcXcS4SiUrgAzQ-H3pQ-fapv3MxiHobTbx1sVMtzbrli57c6F2pssgn2rT-dD86K7xbaLaVer3wV2is1qvo7s65CH6mD4tJi_5_PV5NhnPc8MI73JSWWsVpxWlUoER1nBWE0cxmDpdYy2nlnOmrbTGiUIDVApjXCmFa61kTYfofq_7Ffx372JXbppo3HqtW-f7WFLGJeGKJvDhXxAwBaI45zKht3_Qle9Dm94oQRWKCsCQILyHTPAxBleXX6HZ6LBNSuXO-zJ5X-68Lw_ep5W7g66ORq_roFvTxOMeASYIUJG4mz3XOOeOYyaE4EzQX3y4iuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195937101</pqid></control><display><type>article</type><title>Shortening Array Codes and the Perfect 1-Factorization Conjecture</title><source>IEEE Electronic Library (IEL)</source><creator>Bohossian, V. ; Bruck, J.</creator><creatorcontrib>Bohossian, V. ; Bruck, J.</creatorcontrib><description>The existence of a perfect 1-factorization of the complete graph with n nodes, namely, K n , for arbitrary even number n, is a 40-year-old open problem in graph theory. So far, two infinite families of perfect 1-factorizations have been shown to exist, namely, the factorizations of Kp+1 and K 2 p , where p is an arbitrary prime number (p > 2) . It was shown in previous work that finding a perfect 1 -factorization of K n is related to a problem in coding, specifically, it can be reduced to constructing an MDS (Minimum Distance Separable), lowest density array code. In this paper, a new method for shortening arbitrary array codes is introduced. It is then used to derive the K p+1 family of perfect 1 -factorization from the K 2p family. Namely, techniques from coding theory are used to prove a new result in graph theory-that the two factorization families are related.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2008.2009850</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>1 -factorization ; Applied sciences ; Array codes ; Arrays ; Codes ; Coding ; Coding, codes ; Construction specifications ; Data encryption ; Decoding ; Density ; Error correction codes ; error-correcting codes ; Exact sciences and technology ; Factorization ; Graph theory ; Graphs ; Information theory ; Information, signal and communications theory ; perfect 1 -factorization ; Prime numbers ; Signal and communications theory ; Telecommunications and information theory ; Theory</subject><ispartof>IEEE transactions on information theory, 2009-02, Vol.55 (2), p.507-513</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-2bddd963b33891c7dc64f2e301cf001dd63d664ad8dce75a11b9000b990fa98f3</citedby><cites>FETCH-LOGICAL-c426t-2bddd963b33891c7dc64f2e301cf001dd63d664ad8dce75a11b9000b990fa98f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4777647$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4777647$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21472137$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bohossian, V.</creatorcontrib><creatorcontrib>Bruck, J.</creatorcontrib><title>Shortening Array Codes and the Perfect 1-Factorization Conjecture</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>The existence of a perfect 1-factorization of the complete graph with n nodes, namely, K n , for arbitrary even number n, is a 40-year-old open problem in graph theory. So far, two infinite families of perfect 1-factorizations have been shown to exist, namely, the factorizations of Kp+1 and K 2 p , where p is an arbitrary prime number (p > 2) . It was shown in previous work that finding a perfect 1 -factorization of K n is related to a problem in coding, specifically, it can be reduced to constructing an MDS (Minimum Distance Separable), lowest density array code. In this paper, a new method for shortening arbitrary array codes is introduced. It is then used to derive the K p+1 family of perfect 1 -factorization from the K 2p family. Namely, techniques from coding theory are used to prove a new result in graph theory-that the two factorization families are related.</description><subject>1 -factorization</subject><subject>Applied sciences</subject><subject>Array codes</subject><subject>Arrays</subject><subject>Codes</subject><subject>Coding</subject><subject>Coding, codes</subject><subject>Construction specifications</subject><subject>Data encryption</subject><subject>Decoding</subject><subject>Density</subject><subject>Error correction codes</subject><subject>error-correcting codes</subject><subject>Exact sciences and technology</subject><subject>Factorization</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>perfect 1 -factorization</subject><subject>Prime numbers</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><subject>Theory</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LAzEQhoMoWKt3wcsiKF62ZpJsPo6lWC0UFKznJZtk7ZZ2o8nuof56U1p68OBlhpl55mXmRega8AgAq8fFbDEiGMtdULLAJ2gARSFyxQt2igYYg8wVY_IcXcS4SiUrgAzQ-H3pQ-fapv3MxiHobTbx1sVMtzbrli57c6F2pssgn2rT-dD86K7xbaLaVer3wV2is1qvo7s65CH6mD4tJi_5_PV5NhnPc8MI73JSWWsVpxWlUoER1nBWE0cxmDpdYy2nlnOmrbTGiUIDVApjXCmFa61kTYfofq_7Ffx372JXbppo3HqtW-f7WFLGJeGKJvDhXxAwBaI45zKht3_Qle9Dm94oQRWKCsCQILyHTPAxBleXX6HZ6LBNSuXO-zJ5X-68Lw_ep5W7g66ORq_roFvTxOMeASYIUJG4mz3XOOeOYyaE4EzQX3y4iuQ</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Bohossian, V.</creator><creator>Bruck, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090201</creationdate><title>Shortening Array Codes and the Perfect 1-Factorization Conjecture</title><author>Bohossian, V. ; Bruck, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-2bddd963b33891c7dc64f2e301cf001dd63d664ad8dce75a11b9000b990fa98f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>1 -factorization</topic><topic>Applied sciences</topic><topic>Array codes</topic><topic>Arrays</topic><topic>Codes</topic><topic>Coding</topic><topic>Coding, codes</topic><topic>Construction specifications</topic><topic>Data encryption</topic><topic>Decoding</topic><topic>Density</topic><topic>Error correction codes</topic><topic>error-correcting codes</topic><topic>Exact sciences and technology</topic><topic>Factorization</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>perfect 1 -factorization</topic><topic>Prime numbers</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bohossian, V.</creatorcontrib><creatorcontrib>Bruck, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bohossian, V.</au><au>Bruck, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shortening Array Codes and the Perfect 1-Factorization Conjecture</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>55</volume><issue>2</issue><spage>507</spage><epage>513</epage><pages>507-513</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>The existence of a perfect 1-factorization of the complete graph with n nodes, namely, K n , for arbitrary even number n, is a 40-year-old open problem in graph theory. So far, two infinite families of perfect 1-factorizations have been shown to exist, namely, the factorizations of Kp+1 and K 2 p , where p is an arbitrary prime number (p > 2) . It was shown in previous work that finding a perfect 1 -factorization of K n is related to a problem in coding, specifically, it can be reduced to constructing an MDS (Minimum Distance Separable), lowest density array code. In this paper, a new method for shortening arbitrary array codes is introduced. It is then used to derive the K p+1 family of perfect 1 -factorization from the K 2p family. Namely, techniques from coding theory are used to prove a new result in graph theory-that the two factorization families are related.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2008.2009850</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2009-02, Vol.55 (2), p.507-513 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_4777647 |
source | IEEE Electronic Library (IEL) |
subjects | 1 -factorization Applied sciences Array codes Arrays Codes Coding Coding, codes Construction specifications Data encryption Decoding Density Error correction codes error-correcting codes Exact sciences and technology Factorization Graph theory Graphs Information theory Information, signal and communications theory perfect 1 -factorization Prime numbers Signal and communications theory Telecommunications and information theory Theory |
title | Shortening Array Codes and the Perfect 1-Factorization Conjecture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A55%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shortening%20Array%20Codes%20and%20the%20Perfect%201-Factorization%20Conjecture&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Bohossian,%20V.&rft.date=2009-02-01&rft.volume=55&rft.issue=2&rft.spage=507&rft.epage=513&rft.pages=507-513&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2008.2009850&rft_dat=%3Cproquest_RIE%3E1031296668%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195937101&rft_id=info:pmid/&rft_ieee_id=4777647&rfr_iscdi=true |