Recognition of Off-Line Handwritten Chinese Character by Using Decision Tree Based on Hiberarchy Decomposition

Decision tree based on hiberarchy decomposition is a kind of improved ID3 algorithm. It splits the training set by choosing different key attributes in different layers according to the correlation between classes and attributes. Compared with traditional ID3 algorithm, its rules are simpler and mor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dong Liu, Xiangnian Huang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 354
container_issue
container_start_page 351
container_title
container_volume
creator Dong Liu
Xiangnian Huang
description Decision tree based on hiberarchy decomposition is a kind of improved ID3 algorithm. It splits the training set by choosing different key attributes in different layers according to the correlation between classes and attributes. Compared with traditional ID3 algorithm, its rules are simpler and more general. This paper uses the hiberarchy decomposition methods as well as the C4.5 algorithm and makes some adjustments to deal with the recognition of off-line handwritten Chinese character by constructing a multi-level decision tree. At last, get a scheme of rough classification and analyze the results with different attributes. Compared with the single decision tree, the decision tree based on hiberarchy decomposition has more advantages when dealing with the multi-class problem. Experiment results show that this new method has better accuracy rate.
doi_str_mv 10.1109/ICACC.2009.21
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4777365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4777365</ieee_id><sourcerecordid>4777365</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a7fcd11572e95b619578db43219139e783e8e06b5725262961f07c5c0b4d96253</originalsourceid><addsrcrecordid>eNotT01LAzEUDEhBrXv05CV_YGu-P466aisUCtKeSzb7to3YbEkWZP-9qfouw5s384ZB6J6SBaXEPr43T02zYITYBaNXqLLaUMGE4JwTM0O35WIssULxa1Tl_EnKCMkMZTcofoAfDjGMYYh46PGm7-t1iIBXLnbfKYwjRNwcC5OhoEvOj5BwO-FdDvGAX8CHfPFuEwB-dhk6XLZVaCG55I_TRTGczkP-jbhDs959Zaj-cY52b6_bZlWvN8tSY10HquVYO937jlKpGVjZKmqlNl0rOKOWcgvacDBAVFsEkilmFe2J9tKTVnRWMcnn6OHvbwCA_TmFk0vTXmituZL8Byt_WK4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Recognition of Off-Line Handwritten Chinese Character by Using Decision Tree Based on Hiberarchy Decomposition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dong Liu ; Xiangnian Huang</creator><creatorcontrib>Dong Liu ; Xiangnian Huang</creatorcontrib><description>Decision tree based on hiberarchy decomposition is a kind of improved ID3 algorithm. It splits the training set by choosing different key attributes in different layers according to the correlation between classes and attributes. Compared with traditional ID3 algorithm, its rules are simpler and more general. This paper uses the hiberarchy decomposition methods as well as the C4.5 algorithm and makes some adjustments to deal with the recognition of off-line handwritten Chinese character by constructing a multi-level decision tree. At last, get a scheme of rough classification and analyze the results with different attributes. Compared with the single decision tree, the decision tree based on hiberarchy decomposition has more advantages when dealing with the multi-class problem. Experiment results show that this new method has better accuracy rate.</description><identifier>ISBN: 9781424433308</identifier><identifier>ISBN: 076953516X</identifier><identifier>ISBN: 9780769535166</identifier><identifier>ISBN: 1424433304</identifier><identifier>DOI: 10.1109/ICACC.2009.21</identifier><identifier>LCCN: 2008909463</identifier><language>eng</language><publisher>IEEE</publisher><subject>Character recognition ; Cities and towns ; Classification tree analysis ; decision tree ; Decision trees ; Feature extraction ; Handwriting recognition ; hiberarchy decomposition ; Mathematics ; Pattern recognition ; recognition of off-line handwritten Chinese character ; Testing ; Training data</subject><ispartof>2009 International Conference on Advanced Computer Control, 2009, p.351-354</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4777365$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4777365$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dong Liu</creatorcontrib><creatorcontrib>Xiangnian Huang</creatorcontrib><title>Recognition of Off-Line Handwritten Chinese Character by Using Decision Tree Based on Hiberarchy Decomposition</title><title>2009 International Conference on Advanced Computer Control</title><addtitle>ICACC</addtitle><description>Decision tree based on hiberarchy decomposition is a kind of improved ID3 algorithm. It splits the training set by choosing different key attributes in different layers according to the correlation between classes and attributes. Compared with traditional ID3 algorithm, its rules are simpler and more general. This paper uses the hiberarchy decomposition methods as well as the C4.5 algorithm and makes some adjustments to deal with the recognition of off-line handwritten Chinese character by constructing a multi-level decision tree. At last, get a scheme of rough classification and analyze the results with different attributes. Compared with the single decision tree, the decision tree based on hiberarchy decomposition has more advantages when dealing with the multi-class problem. Experiment results show that this new method has better accuracy rate.</description><subject>Character recognition</subject><subject>Cities and towns</subject><subject>Classification tree analysis</subject><subject>decision tree</subject><subject>Decision trees</subject><subject>Feature extraction</subject><subject>Handwriting recognition</subject><subject>hiberarchy decomposition</subject><subject>Mathematics</subject><subject>Pattern recognition</subject><subject>recognition of off-line handwritten Chinese character</subject><subject>Testing</subject><subject>Training data</subject><isbn>9781424433308</isbn><isbn>076953516X</isbn><isbn>9780769535166</isbn><isbn>1424433304</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT01LAzEUDEhBrXv05CV_YGu-P466aisUCtKeSzb7to3YbEkWZP-9qfouw5s384ZB6J6SBaXEPr43T02zYITYBaNXqLLaUMGE4JwTM0O35WIssULxa1Tl_EnKCMkMZTcofoAfDjGMYYh46PGm7-t1iIBXLnbfKYwjRNwcC5OhoEvOj5BwO-FdDvGAX8CHfPFuEwB-dhk6XLZVaCG55I_TRTGczkP-jbhDs959Zaj-cY52b6_bZlWvN8tSY10HquVYO937jlKpGVjZKmqlNl0rOKOWcgvacDBAVFsEkilmFe2J9tKTVnRWMcnn6OHvbwCA_TmFk0vTXmituZL8Byt_WK4</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Dong Liu</creator><creator>Xiangnian Huang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200901</creationdate><title>Recognition of Off-Line Handwritten Chinese Character by Using Decision Tree Based on Hiberarchy Decomposition</title><author>Dong Liu ; Xiangnian Huang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a7fcd11572e95b619578db43219139e783e8e06b5725262961f07c5c0b4d96253</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Character recognition</topic><topic>Cities and towns</topic><topic>Classification tree analysis</topic><topic>decision tree</topic><topic>Decision trees</topic><topic>Feature extraction</topic><topic>Handwriting recognition</topic><topic>hiberarchy decomposition</topic><topic>Mathematics</topic><topic>Pattern recognition</topic><topic>recognition of off-line handwritten Chinese character</topic><topic>Testing</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Dong Liu</creatorcontrib><creatorcontrib>Xiangnian Huang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong Liu</au><au>Xiangnian Huang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Recognition of Off-Line Handwritten Chinese Character by Using Decision Tree Based on Hiberarchy Decomposition</atitle><btitle>2009 International Conference on Advanced Computer Control</btitle><stitle>ICACC</stitle><date>2009-01</date><risdate>2009</risdate><spage>351</spage><epage>354</epage><pages>351-354</pages><isbn>9781424433308</isbn><isbn>076953516X</isbn><isbn>9780769535166</isbn><isbn>1424433304</isbn><abstract>Decision tree based on hiberarchy decomposition is a kind of improved ID3 algorithm. It splits the training set by choosing different key attributes in different layers according to the correlation between classes and attributes. Compared with traditional ID3 algorithm, its rules are simpler and more general. This paper uses the hiberarchy decomposition methods as well as the C4.5 algorithm and makes some adjustments to deal with the recognition of off-line handwritten Chinese character by constructing a multi-level decision tree. At last, get a scheme of rough classification and analyze the results with different attributes. Compared with the single decision tree, the decision tree based on hiberarchy decomposition has more advantages when dealing with the multi-class problem. Experiment results show that this new method has better accuracy rate.</abstract><pub>IEEE</pub><doi>10.1109/ICACC.2009.21</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424433308
ispartof 2009 International Conference on Advanced Computer Control, 2009, p.351-354
issn
language eng
recordid cdi_ieee_primary_4777365
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Character recognition
Cities and towns
Classification tree analysis
decision tree
Decision trees
Feature extraction
Handwriting recognition
hiberarchy decomposition
Mathematics
Pattern recognition
recognition of off-line handwritten Chinese character
Testing
Training data
title Recognition of Off-Line Handwritten Chinese Character by Using Decision Tree Based on Hiberarchy Decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A21%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Recognition%20of%20Off-Line%20Handwritten%20Chinese%20Character%20by%20Using%20Decision%20Tree%20Based%20on%20Hiberarchy%20Decomposition&rft.btitle=2009%20International%20Conference%20on%20Advanced%20Computer%20Control&rft.au=Dong%20Liu&rft.date=2009-01&rft.spage=351&rft.epage=354&rft.pages=351-354&rft.isbn=9781424433308&rft.isbn_list=076953516X&rft.isbn_list=9780769535166&rft.isbn_list=1424433304&rft_id=info:doi/10.1109/ICACC.2009.21&rft_dat=%3Cieee_6IE%3E4777365%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4777365&rfr_iscdi=true