ANFIS Controller with Fuzzy Subtractive Clustering Method to Reduce Coupling Effects in Twin Rotor MIMO System (TRMS) with Less Memory and Time Usage

In this paper, adaptive neural fuzzy inference system (ANFIS) and fuzzy subtractive clustering method (FSCM) were used to solve non-linearity, trajectory, and interaction problems of twin rotor MIMO system (TRMS). Basically, four fuzzy logic controllers (FLC) have been proposed to match the control...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mahmoud, T.S., Marhaban, M.H., Hong, T.S., Sokchoo Ng
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue
container_start_page 19
container_title
container_volume
creator Mahmoud, T.S.
Marhaban, M.H.
Hong, T.S.
Sokchoo Ng
description In this paper, adaptive neural fuzzy inference system (ANFIS) and fuzzy subtractive clustering method (FSCM) were used to solve non-linearity, trajectory, and interaction problems of twin rotor MIMO system (TRMS). Basically, four fuzzy logic controllers (FLC) have been proposed to match the control objectives on TRMS. The four FLCs are considered as high consumers of memory and processing time relatively. New developed controllers are extracted to cope with these problems with less memory and time. Learning data were extracted from training the used conventional FLCs. Simulation results under MATLAB/Simulinkreg proved the improvement of response and simplicity of controller.
doi_str_mv 10.1109/ICACC.2009.92
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4777302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4777302</ieee_id><sourcerecordid>4777302</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-25e5b63d4684b9a7d27c6d56fb260de1f0807e7822f5b4d4ae73321e1fdb3c3</originalsourceid><addsrcrecordid>eNotj01PwkAQhjcxJCpy9ORlj3oA96vd9kgaUBIqCa1n0nansKZlyXYrKf_D_-sanMPM4cn7TF6EHimZUUri11UyT5IZIySexewGTWIZUcGE4JyTaITuPYliEouQ36JJ130RPyJgEWV36Gf-sVxlODFHZ03TgMVn7Q542V8uA8760tmicvobcNL0nQOrj3ucgjsYhZ3BW1B95ZnpT80fWdQ1VK7D-ojzs19b44zF6Srd4Gzw8RY_59s0e7k-WUPXeVlr7ICLo8K5bgF_dsUeHtCoLpoOJv93jLLlIk_ep-vNm2-7nmoqAzdlAQRlyJUII1HGhVRMVqEKwrpkIVFAaxIRCTJirA5KoUQBknNGPVAlr_gYPV2tGgB2J6vbwg47IaXkhPFfe3FmMw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>ANFIS Controller with Fuzzy Subtractive Clustering Method to Reduce Coupling Effects in Twin Rotor MIMO System (TRMS) with Less Memory and Time Usage</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mahmoud, T.S. ; Marhaban, M.H. ; Hong, T.S. ; Sokchoo Ng</creator><creatorcontrib>Mahmoud, T.S. ; Marhaban, M.H. ; Hong, T.S. ; Sokchoo Ng</creatorcontrib><description>In this paper, adaptive neural fuzzy inference system (ANFIS) and fuzzy subtractive clustering method (FSCM) were used to solve non-linearity, trajectory, and interaction problems of twin rotor MIMO system (TRMS). Basically, four fuzzy logic controllers (FLC) have been proposed to match the control objectives on TRMS. The four FLCs are considered as high consumers of memory and processing time relatively. New developed controllers are extracted to cope with these problems with less memory and time. Learning data were extracted from training the used conventional FLCs. Simulation results under MATLAB/Simulinkreg proved the improvement of response and simplicity of controller.</description><identifier>ISBN: 9781424433308</identifier><identifier>ISBN: 076953516X</identifier><identifier>ISBN: 9780769535166</identifier><identifier>ISBN: 1424433304</identifier><identifier>DOI: 10.1109/ICACC.2009.92</identifier><identifier>LCCN: 2008909463</identifier><language>eng</language><publisher>IEEE</publisher><subject>ANFIS ; Clustering methods ; Control systems ; Data mining ; Fuzzy control ; Fuzzy logic ; Fuzzy Logic Control ; Fuzzy Subtractive Clustering Method ; Fuzzy systems ; MATLAB ; MIMO ; Power capacitors ; Transmission line measurements ; Twin Rotor MIMO System (TRMS)</subject><ispartof>2009 International Conference on Advanced Computer Control, 2009, p.19-23</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4777302$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4777302$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mahmoud, T.S.</creatorcontrib><creatorcontrib>Marhaban, M.H.</creatorcontrib><creatorcontrib>Hong, T.S.</creatorcontrib><creatorcontrib>Sokchoo Ng</creatorcontrib><title>ANFIS Controller with Fuzzy Subtractive Clustering Method to Reduce Coupling Effects in Twin Rotor MIMO System (TRMS) with Less Memory and Time Usage</title><title>2009 International Conference on Advanced Computer Control</title><addtitle>ICACC</addtitle><description>In this paper, adaptive neural fuzzy inference system (ANFIS) and fuzzy subtractive clustering method (FSCM) were used to solve non-linearity, trajectory, and interaction problems of twin rotor MIMO system (TRMS). Basically, four fuzzy logic controllers (FLC) have been proposed to match the control objectives on TRMS. The four FLCs are considered as high consumers of memory and processing time relatively. New developed controllers are extracted to cope with these problems with less memory and time. Learning data were extracted from training the used conventional FLCs. Simulation results under MATLAB/Simulinkreg proved the improvement of response and simplicity of controller.</description><subject>ANFIS</subject><subject>Clustering methods</subject><subject>Control systems</subject><subject>Data mining</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Fuzzy Logic Control</subject><subject>Fuzzy Subtractive Clustering Method</subject><subject>Fuzzy systems</subject><subject>MATLAB</subject><subject>MIMO</subject><subject>Power capacitors</subject><subject>Transmission line measurements</subject><subject>Twin Rotor MIMO System (TRMS)</subject><isbn>9781424433308</isbn><isbn>076953516X</isbn><isbn>9780769535166</isbn><isbn>1424433304</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01PwkAQhjcxJCpy9ORlj3oA96vd9kgaUBIqCa1n0nansKZlyXYrKf_D_-sanMPM4cn7TF6EHimZUUri11UyT5IZIySexewGTWIZUcGE4JyTaITuPYliEouQ36JJ130RPyJgEWV36Gf-sVxlODFHZ03TgMVn7Q542V8uA8760tmicvobcNL0nQOrj3ucgjsYhZ3BW1B95ZnpT80fWdQ1VK7D-ojzs19b44zF6Srd4Gzw8RY_59s0e7k-WUPXeVlr7ICLo8K5bgF_dsUeHtCoLpoOJv93jLLlIk_ep-vNm2-7nmoqAzdlAQRlyJUII1HGhVRMVqEKwrpkIVFAaxIRCTJirA5KoUQBknNGPVAlr_gYPV2tGgB2J6vbwg47IaXkhPFfe3FmMw</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Mahmoud, T.S.</creator><creator>Marhaban, M.H.</creator><creator>Hong, T.S.</creator><creator>Sokchoo Ng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200901</creationdate><title>ANFIS Controller with Fuzzy Subtractive Clustering Method to Reduce Coupling Effects in Twin Rotor MIMO System (TRMS) with Less Memory and Time Usage</title><author>Mahmoud, T.S. ; Marhaban, M.H. ; Hong, T.S. ; Sokchoo Ng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-25e5b63d4684b9a7d27c6d56fb260de1f0807e7822f5b4d4ae73321e1fdb3c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ANFIS</topic><topic>Clustering methods</topic><topic>Control systems</topic><topic>Data mining</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Fuzzy Logic Control</topic><topic>Fuzzy Subtractive Clustering Method</topic><topic>Fuzzy systems</topic><topic>MATLAB</topic><topic>MIMO</topic><topic>Power capacitors</topic><topic>Transmission line measurements</topic><topic>Twin Rotor MIMO System (TRMS)</topic><toplevel>online_resources</toplevel><creatorcontrib>Mahmoud, T.S.</creatorcontrib><creatorcontrib>Marhaban, M.H.</creatorcontrib><creatorcontrib>Hong, T.S.</creatorcontrib><creatorcontrib>Sokchoo Ng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mahmoud, T.S.</au><au>Marhaban, M.H.</au><au>Hong, T.S.</au><au>Sokchoo Ng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>ANFIS Controller with Fuzzy Subtractive Clustering Method to Reduce Coupling Effects in Twin Rotor MIMO System (TRMS) with Less Memory and Time Usage</atitle><btitle>2009 International Conference on Advanced Computer Control</btitle><stitle>ICACC</stitle><date>2009-01</date><risdate>2009</risdate><spage>19</spage><epage>23</epage><pages>19-23</pages><isbn>9781424433308</isbn><isbn>076953516X</isbn><isbn>9780769535166</isbn><isbn>1424433304</isbn><abstract>In this paper, adaptive neural fuzzy inference system (ANFIS) and fuzzy subtractive clustering method (FSCM) were used to solve non-linearity, trajectory, and interaction problems of twin rotor MIMO system (TRMS). Basically, four fuzzy logic controllers (FLC) have been proposed to match the control objectives on TRMS. The four FLCs are considered as high consumers of memory and processing time relatively. New developed controllers are extracted to cope with these problems with less memory and time. Learning data were extracted from training the used conventional FLCs. Simulation results under MATLAB/Simulinkreg proved the improvement of response and simplicity of controller.</abstract><pub>IEEE</pub><doi>10.1109/ICACC.2009.92</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424433308
ispartof 2009 International Conference on Advanced Computer Control, 2009, p.19-23
issn
language eng
recordid cdi_ieee_primary_4777302
source IEEE Electronic Library (IEL) Conference Proceedings
subjects ANFIS
Clustering methods
Control systems
Data mining
Fuzzy control
Fuzzy logic
Fuzzy Logic Control
Fuzzy Subtractive Clustering Method
Fuzzy systems
MATLAB
MIMO
Power capacitors
Transmission line measurements
Twin Rotor MIMO System (TRMS)
title ANFIS Controller with Fuzzy Subtractive Clustering Method to Reduce Coupling Effects in Twin Rotor MIMO System (TRMS) with Less Memory and Time Usage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A16%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=ANFIS%20Controller%20with%20Fuzzy%20Subtractive%20Clustering%20Method%20to%20Reduce%20Coupling%20Effects%20in%20Twin%20Rotor%20MIMO%20System%20(TRMS)%20with%20Less%20Memory%20and%20Time%20Usage&rft.btitle=2009%20International%20Conference%20on%20Advanced%20Computer%20Control&rft.au=Mahmoud,%20T.S.&rft.date=2009-01&rft.spage=19&rft.epage=23&rft.pages=19-23&rft.isbn=9781424433308&rft.isbn_list=076953516X&rft.isbn_list=9780769535166&rft.isbn_list=1424433304&rft_id=info:doi/10.1109/ICACC.2009.92&rft_dat=%3Cieee_6IE%3E4777302%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4777302&rfr_iscdi=true