ANFIS Controller with Fuzzy Subtractive Clustering Method to Reduce Coupling Effects in Twin Rotor MIMO System (TRMS) with Less Memory and Time Usage
In this paper, adaptive neural fuzzy inference system (ANFIS) and fuzzy subtractive clustering method (FSCM) were used to solve non-linearity, trajectory, and interaction problems of twin rotor MIMO system (TRMS). Basically, four fuzzy logic controllers (FLC) have been proposed to match the control...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23 |
---|---|
container_issue | |
container_start_page | 19 |
container_title | |
container_volume | |
creator | Mahmoud, T.S. Marhaban, M.H. Hong, T.S. Sokchoo Ng |
description | In this paper, adaptive neural fuzzy inference system (ANFIS) and fuzzy subtractive clustering method (FSCM) were used to solve non-linearity, trajectory, and interaction problems of twin rotor MIMO system (TRMS). Basically, four fuzzy logic controllers (FLC) have been proposed to match the control objectives on TRMS. The four FLCs are considered as high consumers of memory and processing time relatively. New developed controllers are extracted to cope with these problems with less memory and time. Learning data were extracted from training the used conventional FLCs. Simulation results under MATLAB/Simulinkreg proved the improvement of response and simplicity of controller. |
doi_str_mv | 10.1109/ICACC.2009.92 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4777302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4777302</ieee_id><sourcerecordid>4777302</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-25e5b63d4684b9a7d27c6d56fb260de1f0807e7822f5b4d4ae73321e1fdb3c3</originalsourceid><addsrcrecordid>eNotj01PwkAQhjcxJCpy9ORlj3oA96vd9kgaUBIqCa1n0nansKZlyXYrKf_D_-sanMPM4cn7TF6EHimZUUri11UyT5IZIySexewGTWIZUcGE4JyTaITuPYliEouQ36JJ130RPyJgEWV36Gf-sVxlODFHZ03TgMVn7Q542V8uA8760tmicvobcNL0nQOrj3ucgjsYhZ3BW1B95ZnpT80fWdQ1VK7D-ojzs19b44zF6Srd4Gzw8RY_59s0e7k-WUPXeVlr7ICLo8K5bgF_dsUeHtCoLpoOJv93jLLlIk_ep-vNm2-7nmoqAzdlAQRlyJUII1HGhVRMVqEKwrpkIVFAaxIRCTJirA5KoUQBknNGPVAlr_gYPV2tGgB2J6vbwg47IaXkhPFfe3FmMw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>ANFIS Controller with Fuzzy Subtractive Clustering Method to Reduce Coupling Effects in Twin Rotor MIMO System (TRMS) with Less Memory and Time Usage</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mahmoud, T.S. ; Marhaban, M.H. ; Hong, T.S. ; Sokchoo Ng</creator><creatorcontrib>Mahmoud, T.S. ; Marhaban, M.H. ; Hong, T.S. ; Sokchoo Ng</creatorcontrib><description>In this paper, adaptive neural fuzzy inference system (ANFIS) and fuzzy subtractive clustering method (FSCM) were used to solve non-linearity, trajectory, and interaction problems of twin rotor MIMO system (TRMS). Basically, four fuzzy logic controllers (FLC) have been proposed to match the control objectives on TRMS. The four FLCs are considered as high consumers of memory and processing time relatively. New developed controllers are extracted to cope with these problems with less memory and time. Learning data were extracted from training the used conventional FLCs. Simulation results under MATLAB/Simulinkreg proved the improvement of response and simplicity of controller.</description><identifier>ISBN: 9781424433308</identifier><identifier>ISBN: 076953516X</identifier><identifier>ISBN: 9780769535166</identifier><identifier>ISBN: 1424433304</identifier><identifier>DOI: 10.1109/ICACC.2009.92</identifier><identifier>LCCN: 2008909463</identifier><language>eng</language><publisher>IEEE</publisher><subject>ANFIS ; Clustering methods ; Control systems ; Data mining ; Fuzzy control ; Fuzzy logic ; Fuzzy Logic Control ; Fuzzy Subtractive Clustering Method ; Fuzzy systems ; MATLAB ; MIMO ; Power capacitors ; Transmission line measurements ; Twin Rotor MIMO System (TRMS)</subject><ispartof>2009 International Conference on Advanced Computer Control, 2009, p.19-23</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4777302$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4777302$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mahmoud, T.S.</creatorcontrib><creatorcontrib>Marhaban, M.H.</creatorcontrib><creatorcontrib>Hong, T.S.</creatorcontrib><creatorcontrib>Sokchoo Ng</creatorcontrib><title>ANFIS Controller with Fuzzy Subtractive Clustering Method to Reduce Coupling Effects in Twin Rotor MIMO System (TRMS) with Less Memory and Time Usage</title><title>2009 International Conference on Advanced Computer Control</title><addtitle>ICACC</addtitle><description>In this paper, adaptive neural fuzzy inference system (ANFIS) and fuzzy subtractive clustering method (FSCM) were used to solve non-linearity, trajectory, and interaction problems of twin rotor MIMO system (TRMS). Basically, four fuzzy logic controllers (FLC) have been proposed to match the control objectives on TRMS. The four FLCs are considered as high consumers of memory and processing time relatively. New developed controllers are extracted to cope with these problems with less memory and time. Learning data were extracted from training the used conventional FLCs. Simulation results under MATLAB/Simulinkreg proved the improvement of response and simplicity of controller.</description><subject>ANFIS</subject><subject>Clustering methods</subject><subject>Control systems</subject><subject>Data mining</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Fuzzy Logic Control</subject><subject>Fuzzy Subtractive Clustering Method</subject><subject>Fuzzy systems</subject><subject>MATLAB</subject><subject>MIMO</subject><subject>Power capacitors</subject><subject>Transmission line measurements</subject><subject>Twin Rotor MIMO System (TRMS)</subject><isbn>9781424433308</isbn><isbn>076953516X</isbn><isbn>9780769535166</isbn><isbn>1424433304</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01PwkAQhjcxJCpy9ORlj3oA96vd9kgaUBIqCa1n0nansKZlyXYrKf_D_-sanMPM4cn7TF6EHimZUUri11UyT5IZIySexewGTWIZUcGE4JyTaITuPYliEouQ36JJ130RPyJgEWV36Gf-sVxlODFHZ03TgMVn7Q542V8uA8760tmicvobcNL0nQOrj3ucgjsYhZ3BW1B95ZnpT80fWdQ1VK7D-ojzs19b44zF6Srd4Gzw8RY_59s0e7k-WUPXeVlr7ICLo8K5bgF_dsUeHtCoLpoOJv93jLLlIk_ep-vNm2-7nmoqAzdlAQRlyJUII1HGhVRMVqEKwrpkIVFAaxIRCTJirA5KoUQBknNGPVAlr_gYPV2tGgB2J6vbwg47IaXkhPFfe3FmMw</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Mahmoud, T.S.</creator><creator>Marhaban, M.H.</creator><creator>Hong, T.S.</creator><creator>Sokchoo Ng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200901</creationdate><title>ANFIS Controller with Fuzzy Subtractive Clustering Method to Reduce Coupling Effects in Twin Rotor MIMO System (TRMS) with Less Memory and Time Usage</title><author>Mahmoud, T.S. ; Marhaban, M.H. ; Hong, T.S. ; Sokchoo Ng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-25e5b63d4684b9a7d27c6d56fb260de1f0807e7822f5b4d4ae73321e1fdb3c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ANFIS</topic><topic>Clustering methods</topic><topic>Control systems</topic><topic>Data mining</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Fuzzy Logic Control</topic><topic>Fuzzy Subtractive Clustering Method</topic><topic>Fuzzy systems</topic><topic>MATLAB</topic><topic>MIMO</topic><topic>Power capacitors</topic><topic>Transmission line measurements</topic><topic>Twin Rotor MIMO System (TRMS)</topic><toplevel>online_resources</toplevel><creatorcontrib>Mahmoud, T.S.</creatorcontrib><creatorcontrib>Marhaban, M.H.</creatorcontrib><creatorcontrib>Hong, T.S.</creatorcontrib><creatorcontrib>Sokchoo Ng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mahmoud, T.S.</au><au>Marhaban, M.H.</au><au>Hong, T.S.</au><au>Sokchoo Ng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>ANFIS Controller with Fuzzy Subtractive Clustering Method to Reduce Coupling Effects in Twin Rotor MIMO System (TRMS) with Less Memory and Time Usage</atitle><btitle>2009 International Conference on Advanced Computer Control</btitle><stitle>ICACC</stitle><date>2009-01</date><risdate>2009</risdate><spage>19</spage><epage>23</epage><pages>19-23</pages><isbn>9781424433308</isbn><isbn>076953516X</isbn><isbn>9780769535166</isbn><isbn>1424433304</isbn><abstract>In this paper, adaptive neural fuzzy inference system (ANFIS) and fuzzy subtractive clustering method (FSCM) were used to solve non-linearity, trajectory, and interaction problems of twin rotor MIMO system (TRMS). Basically, four fuzzy logic controllers (FLC) have been proposed to match the control objectives on TRMS. The four FLCs are considered as high consumers of memory and processing time relatively. New developed controllers are extracted to cope with these problems with less memory and time. Learning data were extracted from training the used conventional FLCs. Simulation results under MATLAB/Simulinkreg proved the improvement of response and simplicity of controller.</abstract><pub>IEEE</pub><doi>10.1109/ICACC.2009.92</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424433308 |
ispartof | 2009 International Conference on Advanced Computer Control, 2009, p.19-23 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4777302 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | ANFIS Clustering methods Control systems Data mining Fuzzy control Fuzzy logic Fuzzy Logic Control Fuzzy Subtractive Clustering Method Fuzzy systems MATLAB MIMO Power capacitors Transmission line measurements Twin Rotor MIMO System (TRMS) |
title | ANFIS Controller with Fuzzy Subtractive Clustering Method to Reduce Coupling Effects in Twin Rotor MIMO System (TRMS) with Less Memory and Time Usage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A16%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=ANFIS%20Controller%20with%20Fuzzy%20Subtractive%20Clustering%20Method%20to%20Reduce%20Coupling%20Effects%20in%20Twin%20Rotor%20MIMO%20System%20(TRMS)%20with%20Less%20Memory%20and%20Time%20Usage&rft.btitle=2009%20International%20Conference%20on%20Advanced%20Computer%20Control&rft.au=Mahmoud,%20T.S.&rft.date=2009-01&rft.spage=19&rft.epage=23&rft.pages=19-23&rft.isbn=9781424433308&rft.isbn_list=076953516X&rft.isbn_list=9780769535166&rft.isbn_list=1424433304&rft_id=info:doi/10.1109/ICACC.2009.92&rft_dat=%3Cieee_6IE%3E4777302%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4777302&rfr_iscdi=true |