Intrusion Detection Method Based on Wavelet Neural Network

Aimed at the intrusion behaviors are characterized with uncertainty, complexity, diversity and dynamic tendency and the advantages of wavelet neural network (WNN), an intrusion detection method based on WNN is presented in this paper. Moreover, we adopt a algorithm of reduce the number of the wavele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jianjing Sun, Han Yang, Jingwen Tian, Fan Wu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 854
container_issue
container_start_page 851
container_title
container_volume
creator Jianjing Sun
Han Yang
Jingwen Tian
Fan Wu
description Aimed at the intrusion behaviors are characterized with uncertainty, complexity, diversity and dynamic tendency and the advantages of wavelet neural network (WNN), an intrusion detection method based on WNN is presented in this paper. Moreover, we adopt a algorithm of reduce the number of the wavelet basic function by analysis the sparseness property of sample data which can optimize the wavelet network in a large extent, and the learning algorithm based on the gradient descent was used to train network. We discussed and analyzed the impact factor of intrusion behaviors. With the ability of strong nonlinear function approach and fast convergence rate of WNN, the intrusion detection method based on WNN can detect various intrusion behaviors rapidly and effectively by learning the typical intrusion characteristic information. The experimental result shows that this intrusion detection method is feasible and effective.
doi_str_mv 10.1109/WKDD.2009.214
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4772068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4772068</ieee_id><sourcerecordid>4772068</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a92297299b53c1a636e9ef018cdc4febed683f9918a546fa9a61cf384a1f408b3</originalsourceid><addsrcrecordid>eNotTMtOwzAQtIQqASVHTlzyAwl-28sNGgoVBS6gHqtNshaB0KDEBfH3GMFcZkbzYOxU8FIIDuebu6oqJedQSqEPWAbOc2fBKKOVnLHjFHnQUoE4ZNk0vfIEI1NBHrGL1S6O-6kbdnlFkZr4q-4pvgxtfoUTtXnyG_yknmL-QPsR-0TxaxjfTtgsYD9R9s9z9ry8flrcFuvHm9Xicl10wplYIEgJTgLURjUCrbIEFLjwTdvoQDW11qsAIDwabQMCWtEE5TWKoLmv1Zyd_f12RLT9GLt3HL-32jnJ0_IHwfFHUQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Intrusion Detection Method Based on Wavelet Neural Network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jianjing Sun ; Han Yang ; Jingwen Tian ; Fan Wu</creator><creatorcontrib>Jianjing Sun ; Han Yang ; Jingwen Tian ; Fan Wu</creatorcontrib><description>Aimed at the intrusion behaviors are characterized with uncertainty, complexity, diversity and dynamic tendency and the advantages of wavelet neural network (WNN), an intrusion detection method based on WNN is presented in this paper. Moreover, we adopt a algorithm of reduce the number of the wavelet basic function by analysis the sparseness property of sample data which can optimize the wavelet network in a large extent, and the learning algorithm based on the gradient descent was used to train network. We discussed and analyzed the impact factor of intrusion behaviors. With the ability of strong nonlinear function approach and fast convergence rate of WNN, the intrusion detection method based on WNN can detect various intrusion behaviors rapidly and effectively by learning the typical intrusion characteristic information. The experimental result shows that this intrusion detection method is feasible and effective.</description><identifier>ISBN: 9780769535432</identifier><identifier>ISBN: 0769535437</identifier><identifier>DOI: 10.1109/WKDD.2009.214</identifier><identifier>LCCN: 2008942391</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Artificial neural networks ; Convergence ; Data mining ; Information security ; intrusion behaviors ; Intrusion detection ; network security ; Neural networks ; Uncertainty ; Wavelet analysis ; wavelet neural network ; Wavelet transforms</subject><ispartof>2009 Second International Workshop on Knowledge Discovery and Data Mining, 2009, p.851-854</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4772068$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4772068$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jianjing Sun</creatorcontrib><creatorcontrib>Han Yang</creatorcontrib><creatorcontrib>Jingwen Tian</creatorcontrib><creatorcontrib>Fan Wu</creatorcontrib><title>Intrusion Detection Method Based on Wavelet Neural Network</title><title>2009 Second International Workshop on Knowledge Discovery and Data Mining</title><addtitle>WKDD</addtitle><description>Aimed at the intrusion behaviors are characterized with uncertainty, complexity, diversity and dynamic tendency and the advantages of wavelet neural network (WNN), an intrusion detection method based on WNN is presented in this paper. Moreover, we adopt a algorithm of reduce the number of the wavelet basic function by analysis the sparseness property of sample data which can optimize the wavelet network in a large extent, and the learning algorithm based on the gradient descent was used to train network. We discussed and analyzed the impact factor of intrusion behaviors. With the ability of strong nonlinear function approach and fast convergence rate of WNN, the intrusion detection method based on WNN can detect various intrusion behaviors rapidly and effectively by learning the typical intrusion characteristic information. The experimental result shows that this intrusion detection method is feasible and effective.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Convergence</subject><subject>Data mining</subject><subject>Information security</subject><subject>intrusion behaviors</subject><subject>Intrusion detection</subject><subject>network security</subject><subject>Neural networks</subject><subject>Uncertainty</subject><subject>Wavelet analysis</subject><subject>wavelet neural network</subject><subject>Wavelet transforms</subject><isbn>9780769535432</isbn><isbn>0769535437</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotTMtOwzAQtIQqASVHTlzyAwl-28sNGgoVBS6gHqtNshaB0KDEBfH3GMFcZkbzYOxU8FIIDuebu6oqJedQSqEPWAbOc2fBKKOVnLHjFHnQUoE4ZNk0vfIEI1NBHrGL1S6O-6kbdnlFkZr4q-4pvgxtfoUTtXnyG_yknmL-QPsR-0TxaxjfTtgsYD9R9s9z9ry8flrcFuvHm9Xicl10wplYIEgJTgLURjUCrbIEFLjwTdvoQDW11qsAIDwabQMCWtEE5TWKoLmv1Zyd_f12RLT9GLt3HL-32jnJ0_IHwfFHUQ</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Jianjing Sun</creator><creator>Han Yang</creator><creator>Jingwen Tian</creator><creator>Fan Wu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200901</creationdate><title>Intrusion Detection Method Based on Wavelet Neural Network</title><author>Jianjing Sun ; Han Yang ; Jingwen Tian ; Fan Wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a92297299b53c1a636e9ef018cdc4febed683f9918a546fa9a61cf384a1f408b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Convergence</topic><topic>Data mining</topic><topic>Information security</topic><topic>intrusion behaviors</topic><topic>Intrusion detection</topic><topic>network security</topic><topic>Neural networks</topic><topic>Uncertainty</topic><topic>Wavelet analysis</topic><topic>wavelet neural network</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Jianjing Sun</creatorcontrib><creatorcontrib>Han Yang</creatorcontrib><creatorcontrib>Jingwen Tian</creatorcontrib><creatorcontrib>Fan Wu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jianjing Sun</au><au>Han Yang</au><au>Jingwen Tian</au><au>Fan Wu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Intrusion Detection Method Based on Wavelet Neural Network</atitle><btitle>2009 Second International Workshop on Knowledge Discovery and Data Mining</btitle><stitle>WKDD</stitle><date>2009-01</date><risdate>2009</risdate><spage>851</spage><epage>854</epage><pages>851-854</pages><isbn>9780769535432</isbn><isbn>0769535437</isbn><abstract>Aimed at the intrusion behaviors are characterized with uncertainty, complexity, diversity and dynamic tendency and the advantages of wavelet neural network (WNN), an intrusion detection method based on WNN is presented in this paper. Moreover, we adopt a algorithm of reduce the number of the wavelet basic function by analysis the sparseness property of sample data which can optimize the wavelet network in a large extent, and the learning algorithm based on the gradient descent was used to train network. We discussed and analyzed the impact factor of intrusion behaviors. With the ability of strong nonlinear function approach and fast convergence rate of WNN, the intrusion detection method based on WNN can detect various intrusion behaviors rapidly and effectively by learning the typical intrusion characteristic information. The experimental result shows that this intrusion detection method is feasible and effective.</abstract><pub>IEEE</pub><doi>10.1109/WKDD.2009.214</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769535432
ispartof 2009 Second International Workshop on Knowledge Discovery and Data Mining, 2009, p.851-854
issn
language eng
recordid cdi_ieee_primary_4772068
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial intelligence
Artificial neural networks
Convergence
Data mining
Information security
intrusion behaviors
Intrusion detection
network security
Neural networks
Uncertainty
Wavelet analysis
wavelet neural network
Wavelet transforms
title Intrusion Detection Method Based on Wavelet Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T00%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Intrusion%20Detection%20Method%20Based%20on%20Wavelet%20Neural%20Network&rft.btitle=2009%20Second%20International%20Workshop%20on%20Knowledge%20Discovery%20and%20Data%20Mining&rft.au=Jianjing%20Sun&rft.date=2009-01&rft.spage=851&rft.epage=854&rft.pages=851-854&rft.isbn=9780769535432&rft.isbn_list=0769535437&rft_id=info:doi/10.1109/WKDD.2009.214&rft_dat=%3Cieee_6IE%3E4772068%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4772068&rfr_iscdi=true