Multiplication gain and excess noise factor in double heterojunction avalanche photodiodes

A three layers double heterojunction avalanche photodiode (DHAPD) model is developed using Monte Carlo (MC) method to study the multiplication gain and excess noise factor. It is based on the statistical approach to determine the mean multiplication and excess noise factor due to the impact ionizati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: You, A.H., Tan, S.L., Lim, T.L., Cheang, P.L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 262
container_issue
container_start_page 259
container_title
container_volume
creator You, A.H.
Tan, S.L.
Lim, T.L.
Cheang, P.L.
description A three layers double heterojunction avalanche photodiode (DHAPD) model is developed using Monte Carlo (MC) method to study the multiplication gain and excess noise factor. It is based on the statistical approach to determine the mean multiplication and excess noise factor due to the impact ionization of electron and hole travels in the high electric field. Our model is able to take into the consideration of the higher order impact ionizations that iterate from the second and third layers to represent the real multiplication processes in the DHAPD. The avalanche characteristics in DHAPD are possibly obtained by incorporating the dead-space effect, d ij , hole to electron coefficients ratio, k i and heterointerface probability, p ij . The dead-space effect is known in reducing noise in homojunction and single heterojunction APDs in our previous models. The probability of electron and hole to cross the heterointerface is another factor which eliminates the secondary impact ionizations in the device. However, these effects are not shown in this work for simplicity. Instead of that we are interested to demonstrate the effect of hole to electron coefficients ratio where the number of hole feedback impact ionizations is the dominant effect to improve the excess noise factor in DHAPD. It is shown that the parameters (such as k i ratio, electron and hole ionization coefficients) in the second layer of DHAPD are importantly controlling the characteristics of the device.
doi_str_mv 10.1109/SMELEC.2008.4770319
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4770319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4770319</ieee_id><sourcerecordid>4770319</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-74220ba7dc32d965663ed865f235a19ea4078c0dcc6d7df4321b390cbcfd20b63</originalsourceid><addsrcrecordid>eNotkMtOwzAURI1QJWjpF3TjH0i5fsROligKD6kVC0BCbCrHviGuQhzFCYK_p0BWo9HMmcUQsmGwZQzy66d9uSuLLQfItlJrECw_I0smuZQ8VYydz0ZkWrwuyPK3mIMUSl6QdYxHAGBaScHgkrztp3b0feutGX3o6LvxHTWdo_hlMUbaBR-R1saOYaCnyIWpapE2OOIQjlNn_yjzaVrT2QZp34QxOB8cxiuyqE0bcT3rirzcls_FfbJ7vHsobnaJZzodEy05h8poZwV3uUqVEugyldZcpIblaCTozIKzVjntaik4q0QOtrK1O4FKrMjmf9cj4qEf_IcZvg_zMeIHR2FXKQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multiplication gain and excess noise factor in double heterojunction avalanche photodiodes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>You, A.H. ; Tan, S.L. ; Lim, T.L. ; Cheang, P.L.</creator><creatorcontrib>You, A.H. ; Tan, S.L. ; Lim, T.L. ; Cheang, P.L.</creatorcontrib><description>A three layers double heterojunction avalanche photodiode (DHAPD) model is developed using Monte Carlo (MC) method to study the multiplication gain and excess noise factor. It is based on the statistical approach to determine the mean multiplication and excess noise factor due to the impact ionization of electron and hole travels in the high electric field. Our model is able to take into the consideration of the higher order impact ionizations that iterate from the second and third layers to represent the real multiplication processes in the DHAPD. The avalanche characteristics in DHAPD are possibly obtained by incorporating the dead-space effect, d ij , hole to electron coefficients ratio, k i and heterointerface probability, p ij . The dead-space effect is known in reducing noise in homojunction and single heterojunction APDs in our previous models. The probability of electron and hole to cross the heterointerface is another factor which eliminates the secondary impact ionizations in the device. However, these effects are not shown in this work for simplicity. Instead of that we are interested to demonstrate the effect of hole to electron coefficients ratio where the number of hole feedback impact ionizations is the dominant effect to improve the excess noise factor in DHAPD. It is shown that the parameters (such as k i ratio, electron and hole ionization coefficients) in the second layer of DHAPD are importantly controlling the characteristics of the device.</description><identifier>ISBN: 142443873X</identifier><identifier>ISBN: 9781424425600</identifier><identifier>ISBN: 9781424438730</identifier><identifier>ISBN: 1424425603</identifier><identifier>EISBN: 1424425611</identifier><identifier>EISBN: 9781424425617</identifier><identifier>DOI: 10.1109/SMELEC.2008.4770319</identifier><identifier>LCCN: 2008904364</identifier><language>eng</language><publisher>IEEE</publisher><subject>Avalanche photodiodes ; Charge carrier processes ; dead-space effect ; Double heterojunction avalanche photodiode ; excess noise factor ; heterointerface probability ; Heterojunctions ; Impact ionization ; multiplication gain ; Noise reduction ; Optical feedback ; Optical noise ; Optical superlattices ; Semiconductor device noise ; Stimulated emission</subject><ispartof>2008 IEEE International Conference on Semiconductor Electronics, 2008, p.259-262</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4770319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4770319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>You, A.H.</creatorcontrib><creatorcontrib>Tan, S.L.</creatorcontrib><creatorcontrib>Lim, T.L.</creatorcontrib><creatorcontrib>Cheang, P.L.</creatorcontrib><title>Multiplication gain and excess noise factor in double heterojunction avalanche photodiodes</title><title>2008 IEEE International Conference on Semiconductor Electronics</title><addtitle>SMELEC</addtitle><description>A three layers double heterojunction avalanche photodiode (DHAPD) model is developed using Monte Carlo (MC) method to study the multiplication gain and excess noise factor. It is based on the statistical approach to determine the mean multiplication and excess noise factor due to the impact ionization of electron and hole travels in the high electric field. Our model is able to take into the consideration of the higher order impact ionizations that iterate from the second and third layers to represent the real multiplication processes in the DHAPD. The avalanche characteristics in DHAPD are possibly obtained by incorporating the dead-space effect, d ij , hole to electron coefficients ratio, k i and heterointerface probability, p ij . The dead-space effect is known in reducing noise in homojunction and single heterojunction APDs in our previous models. The probability of electron and hole to cross the heterointerface is another factor which eliminates the secondary impact ionizations in the device. However, these effects are not shown in this work for simplicity. Instead of that we are interested to demonstrate the effect of hole to electron coefficients ratio where the number of hole feedback impact ionizations is the dominant effect to improve the excess noise factor in DHAPD. It is shown that the parameters (such as k i ratio, electron and hole ionization coefficients) in the second layer of DHAPD are importantly controlling the characteristics of the device.</description><subject>Avalanche photodiodes</subject><subject>Charge carrier processes</subject><subject>dead-space effect</subject><subject>Double heterojunction avalanche photodiode</subject><subject>excess noise factor</subject><subject>heterointerface probability</subject><subject>Heterojunctions</subject><subject>Impact ionization</subject><subject>multiplication gain</subject><subject>Noise reduction</subject><subject>Optical feedback</subject><subject>Optical noise</subject><subject>Optical superlattices</subject><subject>Semiconductor device noise</subject><subject>Stimulated emission</subject><isbn>142443873X</isbn><isbn>9781424425600</isbn><isbn>9781424438730</isbn><isbn>1424425603</isbn><isbn>1424425611</isbn><isbn>9781424425617</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkMtOwzAURI1QJWjpF3TjH0i5fsROligKD6kVC0BCbCrHviGuQhzFCYK_p0BWo9HMmcUQsmGwZQzy66d9uSuLLQfItlJrECw_I0smuZQ8VYydz0ZkWrwuyPK3mIMUSl6QdYxHAGBaScHgkrztp3b0feutGX3o6LvxHTWdo_hlMUbaBR-R1saOYaCnyIWpapE2OOIQjlNn_yjzaVrT2QZp34QxOB8cxiuyqE0bcT3rirzcls_FfbJ7vHsobnaJZzodEy05h8poZwV3uUqVEugyldZcpIblaCTozIKzVjntaik4q0QOtrK1O4FKrMjmf9cj4qEf_IcZvg_zMeIHR2FXKQ</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>You, A.H.</creator><creator>Tan, S.L.</creator><creator>Lim, T.L.</creator><creator>Cheang, P.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200811</creationdate><title>Multiplication gain and excess noise factor in double heterojunction avalanche photodiodes</title><author>You, A.H. ; Tan, S.L. ; Lim, T.L. ; Cheang, P.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-74220ba7dc32d965663ed865f235a19ea4078c0dcc6d7df4321b390cbcfd20b63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Avalanche photodiodes</topic><topic>Charge carrier processes</topic><topic>dead-space effect</topic><topic>Double heterojunction avalanche photodiode</topic><topic>excess noise factor</topic><topic>heterointerface probability</topic><topic>Heterojunctions</topic><topic>Impact ionization</topic><topic>multiplication gain</topic><topic>Noise reduction</topic><topic>Optical feedback</topic><topic>Optical noise</topic><topic>Optical superlattices</topic><topic>Semiconductor device noise</topic><topic>Stimulated emission</topic><toplevel>online_resources</toplevel><creatorcontrib>You, A.H.</creatorcontrib><creatorcontrib>Tan, S.L.</creatorcontrib><creatorcontrib>Lim, T.L.</creatorcontrib><creatorcontrib>Cheang, P.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>You, A.H.</au><au>Tan, S.L.</au><au>Lim, T.L.</au><au>Cheang, P.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multiplication gain and excess noise factor in double heterojunction avalanche photodiodes</atitle><btitle>2008 IEEE International Conference on Semiconductor Electronics</btitle><stitle>SMELEC</stitle><date>2008-11</date><risdate>2008</risdate><spage>259</spage><epage>262</epage><pages>259-262</pages><isbn>142443873X</isbn><isbn>9781424425600</isbn><isbn>9781424438730</isbn><isbn>1424425603</isbn><eisbn>1424425611</eisbn><eisbn>9781424425617</eisbn><abstract>A three layers double heterojunction avalanche photodiode (DHAPD) model is developed using Monte Carlo (MC) method to study the multiplication gain and excess noise factor. It is based on the statistical approach to determine the mean multiplication and excess noise factor due to the impact ionization of electron and hole travels in the high electric field. Our model is able to take into the consideration of the higher order impact ionizations that iterate from the second and third layers to represent the real multiplication processes in the DHAPD. The avalanche characteristics in DHAPD are possibly obtained by incorporating the dead-space effect, d ij , hole to electron coefficients ratio, k i and heterointerface probability, p ij . The dead-space effect is known in reducing noise in homojunction and single heterojunction APDs in our previous models. The probability of electron and hole to cross the heterointerface is another factor which eliminates the secondary impact ionizations in the device. However, these effects are not shown in this work for simplicity. Instead of that we are interested to demonstrate the effect of hole to electron coefficients ratio where the number of hole feedback impact ionizations is the dominant effect to improve the excess noise factor in DHAPD. It is shown that the parameters (such as k i ratio, electron and hole ionization coefficients) in the second layer of DHAPD are importantly controlling the characteristics of the device.</abstract><pub>IEEE</pub><doi>10.1109/SMELEC.2008.4770319</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 142443873X
ispartof 2008 IEEE International Conference on Semiconductor Electronics, 2008, p.259-262
issn
language eng
recordid cdi_ieee_primary_4770319
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Avalanche photodiodes
Charge carrier processes
dead-space effect
Double heterojunction avalanche photodiode
excess noise factor
heterointerface probability
Heterojunctions
Impact ionization
multiplication gain
Noise reduction
Optical feedback
Optical noise
Optical superlattices
Semiconductor device noise
Stimulated emission
title Multiplication gain and excess noise factor in double heterojunction avalanche photodiodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A58%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multiplication%20gain%20and%20excess%20noise%20factor%20in%20double%20heterojunction%20avalanche%20photodiodes&rft.btitle=2008%20IEEE%20International%20Conference%20on%20Semiconductor%20Electronics&rft.au=You,%20A.H.&rft.date=2008-11&rft.spage=259&rft.epage=262&rft.pages=259-262&rft.isbn=142443873X&rft.isbn_list=9781424425600&rft.isbn_list=9781424438730&rft.isbn_list=1424425603&rft_id=info:doi/10.1109/SMELEC.2008.4770319&rft_dat=%3Cieee_6IE%3E4770319%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424425611&rft.eisbn_list=9781424425617&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4770319&rfr_iscdi=true