Behavioral Fault Model for Neural Networks
The term neural network (NN) originally referred to a network of interconnected neurons which are basic building blocks of the nervous system. Fault tolerance is known as an inherent feature of artificial neural networks (ANNs). Wide attention has been given to the problem of fault-tolerance in VLSI...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 75 |
---|---|
container_issue | |
container_start_page | 71 |
container_title | |
container_volume | 2 |
creator | Ahmadi, A. Fakhraie, S.M. Lucas, C. |
description | The term neural network (NN) originally referred to a network of interconnected neurons which are basic building blocks of the nervous system. Fault tolerance is known as an inherent feature of artificial neural networks (ANNs). Wide attention has been given to the problem of fault-tolerance in VLSI implementation domain and not enough attention has been paid to intrinsic capacity of survival to faults. In this work we focus on the impact of faults on the neural computation in order to show neural paradigms cannot be considered intrinsically fault-tolerant. A high abstraction level (corresponding to the neural graph) error model is introduced in this paper. We propose fault model and present an analysis of the usability of our method for fault masking. Simulation results show with this new fault model, the fault with less significant contribution is masked in output. |
doi_str_mv | 10.1109/ICCET.2009.201 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4769561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4769561</ieee_id><sourcerecordid>4769561</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7ddd11caadbf72d4f897e3faf0d51598565b1bb92169b610515e777b102f701e3</originalsourceid><addsrcrecordid>eNotzM1Lw0AQBfAFKdTWXr14yVlIndmvyR41tFqo9dKey647i9FIZJMq_vdG9B3eg9_hCXGJsEQEd7Op69V-KQHcWHgmZqil1kopTRMxG71y4DTRVCz6_hXGaCPJ2XNxfccv_rPpsm-LtT-1Q_HYRW6L1OVix6df3vHw1eW3_kJMkm97XvzvXBzWq339UG6f7jf17bZskMxQUowR8dn7GBLJqFPliFXyCaJB4ypjTcAQnETrgkUYkYkoIMhEgKzm4urvt2Hm40du3n3-PmqyzlhUPz7QQJE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Behavioral Fault Model for Neural Networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ahmadi, A. ; Fakhraie, S.M. ; Lucas, C.</creator><creatorcontrib>Ahmadi, A. ; Fakhraie, S.M. ; Lucas, C.</creatorcontrib><description>The term neural network (NN) originally referred to a network of interconnected neurons which are basic building blocks of the nervous system. Fault tolerance is known as an inherent feature of artificial neural networks (ANNs). Wide attention has been given to the problem of fault-tolerance in VLSI implementation domain and not enough attention has been paid to intrinsic capacity of survival to faults. In this work we focus on the impact of faults on the neural computation in order to show neural paradigms cannot be considered intrinsically fault-tolerant. A high abstraction level (corresponding to the neural graph) error model is introduced in this paper. We propose fault model and present an analysis of the usability of our method for fault masking. Simulation results show with this new fault model, the fault with less significant contribution is masked in output.</description><identifier>ISBN: 1424433347</identifier><identifier>ISBN: 9781424433346</identifier><identifier>ISBN: 9780769535210</identifier><identifier>ISBN: 0769535216</identifier><identifier>DOI: 10.1109/ICCET.2009.201</identifier><identifier>LCCN: 2008909477</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Biological neural networks ; Circuit faults ; Computer networks ; fault model ; Fault tolerance ; fault-tolerancee ; Intelligent networks ; Multi-layer neural network ; Neural network hardware ; Neural networks ; Neurons</subject><ispartof>2009 International Conference on Computer Engineering and Technology, 2009, Vol.2, p.71-75</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4769561$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4769561$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ahmadi, A.</creatorcontrib><creatorcontrib>Fakhraie, S.M.</creatorcontrib><creatorcontrib>Lucas, C.</creatorcontrib><title>Behavioral Fault Model for Neural Networks</title><title>2009 International Conference on Computer Engineering and Technology</title><addtitle>ICCET</addtitle><description>The term neural network (NN) originally referred to a network of interconnected neurons which are basic building blocks of the nervous system. Fault tolerance is known as an inherent feature of artificial neural networks (ANNs). Wide attention has been given to the problem of fault-tolerance in VLSI implementation domain and not enough attention has been paid to intrinsic capacity of survival to faults. In this work we focus on the impact of faults on the neural computation in order to show neural paradigms cannot be considered intrinsically fault-tolerant. A high abstraction level (corresponding to the neural graph) error model is introduced in this paper. We propose fault model and present an analysis of the usability of our method for fault masking. Simulation results show with this new fault model, the fault with less significant contribution is masked in output.</description><subject>Artificial neural networks</subject><subject>Biological neural networks</subject><subject>Circuit faults</subject><subject>Computer networks</subject><subject>fault model</subject><subject>Fault tolerance</subject><subject>fault-tolerancee</subject><subject>Intelligent networks</subject><subject>Multi-layer neural network</subject><subject>Neural network hardware</subject><subject>Neural networks</subject><subject>Neurons</subject><isbn>1424433347</isbn><isbn>9781424433346</isbn><isbn>9780769535210</isbn><isbn>0769535216</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzM1Lw0AQBfAFKdTWXr14yVlIndmvyR41tFqo9dKey647i9FIZJMq_vdG9B3eg9_hCXGJsEQEd7Op69V-KQHcWHgmZqil1kopTRMxG71y4DTRVCz6_hXGaCPJ2XNxfccv_rPpsm-LtT-1Q_HYRW6L1OVix6df3vHw1eW3_kJMkm97XvzvXBzWq339UG6f7jf17bZskMxQUowR8dn7GBLJqFPliFXyCaJB4ypjTcAQnETrgkUYkYkoIMhEgKzm4urvt2Hm40du3n3-PmqyzlhUPz7QQJE</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Ahmadi, A.</creator><creator>Fakhraie, S.M.</creator><creator>Lucas, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200901</creationdate><title>Behavioral Fault Model for Neural Networks</title><author>Ahmadi, A. ; Fakhraie, S.M. ; Lucas, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7ddd11caadbf72d4f897e3faf0d51598565b1bb92169b610515e777b102f701e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial neural networks</topic><topic>Biological neural networks</topic><topic>Circuit faults</topic><topic>Computer networks</topic><topic>fault model</topic><topic>Fault tolerance</topic><topic>fault-tolerancee</topic><topic>Intelligent networks</topic><topic>Multi-layer neural network</topic><topic>Neural network hardware</topic><topic>Neural networks</topic><topic>Neurons</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahmadi, A.</creatorcontrib><creatorcontrib>Fakhraie, S.M.</creatorcontrib><creatorcontrib>Lucas, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahmadi, A.</au><au>Fakhraie, S.M.</au><au>Lucas, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Behavioral Fault Model for Neural Networks</atitle><btitle>2009 International Conference on Computer Engineering and Technology</btitle><stitle>ICCET</stitle><date>2009-01</date><risdate>2009</risdate><volume>2</volume><spage>71</spage><epage>75</epage><pages>71-75</pages><isbn>1424433347</isbn><isbn>9781424433346</isbn><isbn>9780769535210</isbn><isbn>0769535216</isbn><abstract>The term neural network (NN) originally referred to a network of interconnected neurons which are basic building blocks of the nervous system. Fault tolerance is known as an inherent feature of artificial neural networks (ANNs). Wide attention has been given to the problem of fault-tolerance in VLSI implementation domain and not enough attention has been paid to intrinsic capacity of survival to faults. In this work we focus on the impact of faults on the neural computation in order to show neural paradigms cannot be considered intrinsically fault-tolerant. A high abstraction level (corresponding to the neural graph) error model is introduced in this paper. We propose fault model and present an analysis of the usability of our method for fault masking. Simulation results show with this new fault model, the fault with less significant contribution is masked in output.</abstract><pub>IEEE</pub><doi>10.1109/ICCET.2009.201</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424433347 |
ispartof | 2009 International Conference on Computer Engineering and Technology, 2009, Vol.2, p.71-75 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4769561 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Biological neural networks Circuit faults Computer networks fault model Fault tolerance fault-tolerancee Intelligent networks Multi-layer neural network Neural network hardware Neural networks Neurons |
title | Behavioral Fault Model for Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Behavioral%20Fault%20Model%20for%20Neural%20Networks&rft.btitle=2009%20International%20Conference%20on%20Computer%20Engineering%20and%20Technology&rft.au=Ahmadi,%20A.&rft.date=2009-01&rft.volume=2&rft.spage=71&rft.epage=75&rft.pages=71-75&rft.isbn=1424433347&rft.isbn_list=9781424433346&rft.isbn_list=9780769535210&rft.isbn_list=0769535216&rft_id=info:doi/10.1109/ICCET.2009.201&rft_dat=%3Cieee_6IE%3E4769561%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4769561&rfr_iscdi=true |