Behavioral Fault Model for Neural Networks

The term neural network (NN) originally referred to a network of interconnected neurons which are basic building blocks of the nervous system. Fault tolerance is known as an inherent feature of artificial neural networks (ANNs). Wide attention has been given to the problem of fault-tolerance in VLSI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ahmadi, A., Fakhraie, S.M., Lucas, C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue
container_start_page 71
container_title
container_volume 2
creator Ahmadi, A.
Fakhraie, S.M.
Lucas, C.
description The term neural network (NN) originally referred to a network of interconnected neurons which are basic building blocks of the nervous system. Fault tolerance is known as an inherent feature of artificial neural networks (ANNs). Wide attention has been given to the problem of fault-tolerance in VLSI implementation domain and not enough attention has been paid to intrinsic capacity of survival to faults. In this work we focus on the impact of faults on the neural computation in order to show neural paradigms cannot be considered intrinsically fault-tolerant. A high abstraction level (corresponding to the neural graph) error model is introduced in this paper. We propose fault model and present an analysis of the usability of our method for fault masking. Simulation results show with this new fault model, the fault with less significant contribution is masked in output.
doi_str_mv 10.1109/ICCET.2009.201
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4769561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4769561</ieee_id><sourcerecordid>4769561</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7ddd11caadbf72d4f897e3faf0d51598565b1bb92169b610515e777b102f701e3</originalsourceid><addsrcrecordid>eNotzM1Lw0AQBfAFKdTWXr14yVlIndmvyR41tFqo9dKey647i9FIZJMq_vdG9B3eg9_hCXGJsEQEd7Op69V-KQHcWHgmZqil1kopTRMxG71y4DTRVCz6_hXGaCPJ2XNxfccv_rPpsm-LtT-1Q_HYRW6L1OVix6df3vHw1eW3_kJMkm97XvzvXBzWq339UG6f7jf17bZskMxQUowR8dn7GBLJqFPliFXyCaJB4ypjTcAQnETrgkUYkYkoIMhEgKzm4urvt2Hm40du3n3-PmqyzlhUPz7QQJE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Behavioral Fault Model for Neural Networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ahmadi, A. ; Fakhraie, S.M. ; Lucas, C.</creator><creatorcontrib>Ahmadi, A. ; Fakhraie, S.M. ; Lucas, C.</creatorcontrib><description>The term neural network (NN) originally referred to a network of interconnected neurons which are basic building blocks of the nervous system. Fault tolerance is known as an inherent feature of artificial neural networks (ANNs). Wide attention has been given to the problem of fault-tolerance in VLSI implementation domain and not enough attention has been paid to intrinsic capacity of survival to faults. In this work we focus on the impact of faults on the neural computation in order to show neural paradigms cannot be considered intrinsically fault-tolerant. A high abstraction level (corresponding to the neural graph) error model is introduced in this paper. We propose fault model and present an analysis of the usability of our method for fault masking. Simulation results show with this new fault model, the fault with less significant contribution is masked in output.</description><identifier>ISBN: 1424433347</identifier><identifier>ISBN: 9781424433346</identifier><identifier>ISBN: 9780769535210</identifier><identifier>ISBN: 0769535216</identifier><identifier>DOI: 10.1109/ICCET.2009.201</identifier><identifier>LCCN: 2008909477</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Biological neural networks ; Circuit faults ; Computer networks ; fault model ; Fault tolerance ; fault-tolerancee ; Intelligent networks ; Multi-layer neural network ; Neural network hardware ; Neural networks ; Neurons</subject><ispartof>2009 International Conference on Computer Engineering and Technology, 2009, Vol.2, p.71-75</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4769561$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4769561$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ahmadi, A.</creatorcontrib><creatorcontrib>Fakhraie, S.M.</creatorcontrib><creatorcontrib>Lucas, C.</creatorcontrib><title>Behavioral Fault Model for Neural Networks</title><title>2009 International Conference on Computer Engineering and Technology</title><addtitle>ICCET</addtitle><description>The term neural network (NN) originally referred to a network of interconnected neurons which are basic building blocks of the nervous system. Fault tolerance is known as an inherent feature of artificial neural networks (ANNs). Wide attention has been given to the problem of fault-tolerance in VLSI implementation domain and not enough attention has been paid to intrinsic capacity of survival to faults. In this work we focus on the impact of faults on the neural computation in order to show neural paradigms cannot be considered intrinsically fault-tolerant. A high abstraction level (corresponding to the neural graph) error model is introduced in this paper. We propose fault model and present an analysis of the usability of our method for fault masking. Simulation results show with this new fault model, the fault with less significant contribution is masked in output.</description><subject>Artificial neural networks</subject><subject>Biological neural networks</subject><subject>Circuit faults</subject><subject>Computer networks</subject><subject>fault model</subject><subject>Fault tolerance</subject><subject>fault-tolerancee</subject><subject>Intelligent networks</subject><subject>Multi-layer neural network</subject><subject>Neural network hardware</subject><subject>Neural networks</subject><subject>Neurons</subject><isbn>1424433347</isbn><isbn>9781424433346</isbn><isbn>9780769535210</isbn><isbn>0769535216</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzM1Lw0AQBfAFKdTWXr14yVlIndmvyR41tFqo9dKey647i9FIZJMq_vdG9B3eg9_hCXGJsEQEd7Op69V-KQHcWHgmZqil1kopTRMxG71y4DTRVCz6_hXGaCPJ2XNxfccv_rPpsm-LtT-1Q_HYRW6L1OVix6df3vHw1eW3_kJMkm97XvzvXBzWq339UG6f7jf17bZskMxQUowR8dn7GBLJqFPliFXyCaJB4ypjTcAQnETrgkUYkYkoIMhEgKzm4urvt2Hm40du3n3-PmqyzlhUPz7QQJE</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Ahmadi, A.</creator><creator>Fakhraie, S.M.</creator><creator>Lucas, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200901</creationdate><title>Behavioral Fault Model for Neural Networks</title><author>Ahmadi, A. ; Fakhraie, S.M. ; Lucas, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7ddd11caadbf72d4f897e3faf0d51598565b1bb92169b610515e777b102f701e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial neural networks</topic><topic>Biological neural networks</topic><topic>Circuit faults</topic><topic>Computer networks</topic><topic>fault model</topic><topic>Fault tolerance</topic><topic>fault-tolerancee</topic><topic>Intelligent networks</topic><topic>Multi-layer neural network</topic><topic>Neural network hardware</topic><topic>Neural networks</topic><topic>Neurons</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahmadi, A.</creatorcontrib><creatorcontrib>Fakhraie, S.M.</creatorcontrib><creatorcontrib>Lucas, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahmadi, A.</au><au>Fakhraie, S.M.</au><au>Lucas, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Behavioral Fault Model for Neural Networks</atitle><btitle>2009 International Conference on Computer Engineering and Technology</btitle><stitle>ICCET</stitle><date>2009-01</date><risdate>2009</risdate><volume>2</volume><spage>71</spage><epage>75</epage><pages>71-75</pages><isbn>1424433347</isbn><isbn>9781424433346</isbn><isbn>9780769535210</isbn><isbn>0769535216</isbn><abstract>The term neural network (NN) originally referred to a network of interconnected neurons which are basic building blocks of the nervous system. Fault tolerance is known as an inherent feature of artificial neural networks (ANNs). Wide attention has been given to the problem of fault-tolerance in VLSI implementation domain and not enough attention has been paid to intrinsic capacity of survival to faults. In this work we focus on the impact of faults on the neural computation in order to show neural paradigms cannot be considered intrinsically fault-tolerant. A high abstraction level (corresponding to the neural graph) error model is introduced in this paper. We propose fault model and present an analysis of the usability of our method for fault masking. Simulation results show with this new fault model, the fault with less significant contribution is masked in output.</abstract><pub>IEEE</pub><doi>10.1109/ICCET.2009.201</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424433347
ispartof 2009 International Conference on Computer Engineering and Technology, 2009, Vol.2, p.71-75
issn
language eng
recordid cdi_ieee_primary_4769561
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Biological neural networks
Circuit faults
Computer networks
fault model
Fault tolerance
fault-tolerancee
Intelligent networks
Multi-layer neural network
Neural network hardware
Neural networks
Neurons
title Behavioral Fault Model for Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Behavioral%20Fault%20Model%20for%20Neural%20Networks&rft.btitle=2009%20International%20Conference%20on%20Computer%20Engineering%20and%20Technology&rft.au=Ahmadi,%20A.&rft.date=2009-01&rft.volume=2&rft.spage=71&rft.epage=75&rft.pages=71-75&rft.isbn=1424433347&rft.isbn_list=9781424433346&rft.isbn_list=9780769535210&rft.isbn_list=0769535216&rft_id=info:doi/10.1109/ICCET.2009.201&rft_dat=%3Cieee_6IE%3E4769561%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4769561&rfr_iscdi=true