Generation of test data using meta heuristic approach

Software testing is of huge importance to development of any software. The prime focus is to minimize the expenses on the testing. In software testing the major problem is generation of test data. Several metaheuristic approaches in this field have become very popular. The aim is to generate the opt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Srivastava, P.R., Ramachandran, V., Kumar, M., Talukder, G., Tiwari, V., Sharma, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Srivastava, P.R.
Ramachandran, V.
Kumar, M.
Talukder, G.
Tiwari, V.
Sharma, P.
description Software testing is of huge importance to development of any software. The prime focus is to minimize the expenses on the testing. In software testing the major problem is generation of test data. Several metaheuristic approaches in this field have become very popular. The aim is to generate the optimum set of test data, which would still not compromise on exhaustive testing of software. Our objective is to generate such efficient test data using genetic algorithm and ant colony optimization for a given software. We have also compared the two approaches of software testing to determine which of these are effective towards generation of test data and constraints if any.
doi_str_mv 10.1109/TENCON.2008.4766707
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4766707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4766707</ieee_id><sourcerecordid>4766707</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ba8f2ee24bc7220d9ed829eb08533bbe026b2b07ed6e48b8ee8fffa107dde4683</originalsourceid><addsrcrecordid>eNo9kM1qwzAQhNWfQJPUT5CLXsDpai1b0rGYNC2E5OJ7kOxVo9LYxlYOffu6NO0wMAMfzGEYWwlYCwHmqdrsy8N-jQB6LVVRKFA3LDFKC4lyMhi8ZXMUuUkzmcMdW_wBbe7_gcQZW_xsGMhQyQeWjOMHTMpBgRFzlm-ppcHG0LW88zzSGHljo-WXMbTv_ExTPdFlCGMMNbd9P3S2Pj2ymbefIyXXXLLqZVOVr-nusH0rn3dpMBBTZ7VHIpSuVojQGGo0GnKg8yxzjgALhw4UNQVJ7TSR9t5bAappSBY6W7LV72wgomM_hLMdvo7XN7JvQa1NlA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Generation of test data using meta heuristic approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Srivastava, P.R. ; Ramachandran, V. ; Kumar, M. ; Talukder, G. ; Tiwari, V. ; Sharma, P.</creator><creatorcontrib>Srivastava, P.R. ; Ramachandran, V. ; Kumar, M. ; Talukder, G. ; Tiwari, V. ; Sharma, P.</creatorcontrib><description>Software testing is of huge importance to development of any software. The prime focus is to minimize the expenses on the testing. In software testing the major problem is generation of test data. Several metaheuristic approaches in this field have become very popular. The aim is to generate the optimum set of test data, which would still not compromise on exhaustive testing of software. Our objective is to generate such efficient test data using genetic algorithm and ant colony optimization for a given software. We have also compared the two approaches of software testing to determine which of these are effective towards generation of test data and constraints if any.</description><identifier>ISSN: 2159-3442</identifier><identifier>ISBN: 1424424089</identifier><identifier>ISBN: 9781424424085</identifier><identifier>EISSN: 2159-3450</identifier><identifier>EISBN: 9781424424092</identifier><identifier>EISBN: 1424424097</identifier><identifier>DOI: 10.1109/TENCON.2008.4766707</identifier><identifier>LCCN: 2008903274</identifier><language>eng</language><publisher>IEEE</publisher><subject>Ant colony optimization ; Ant Colony Optimization (ACO) ; Chemicals ; Computer science ; Fitness Function ; Genetic Algorithm (GA) ; Genetic algorithms ; Genetic mutations ; Information systems ; Search problems ; Software testing ; System testing ; Wheels</subject><ispartof>TENCON 2008 - 2008 IEEE Region 10 Conference, 2008, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4766707$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4766707$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Srivastava, P.R.</creatorcontrib><creatorcontrib>Ramachandran, V.</creatorcontrib><creatorcontrib>Kumar, M.</creatorcontrib><creatorcontrib>Talukder, G.</creatorcontrib><creatorcontrib>Tiwari, V.</creatorcontrib><creatorcontrib>Sharma, P.</creatorcontrib><title>Generation of test data using meta heuristic approach</title><title>TENCON 2008 - 2008 IEEE Region 10 Conference</title><addtitle>TENCON</addtitle><description>Software testing is of huge importance to development of any software. The prime focus is to minimize the expenses on the testing. In software testing the major problem is generation of test data. Several metaheuristic approaches in this field have become very popular. The aim is to generate the optimum set of test data, which would still not compromise on exhaustive testing of software. Our objective is to generate such efficient test data using genetic algorithm and ant colony optimization for a given software. We have also compared the two approaches of software testing to determine which of these are effective towards generation of test data and constraints if any.</description><subject>Ant colony optimization</subject><subject>Ant Colony Optimization (ACO)</subject><subject>Chemicals</subject><subject>Computer science</subject><subject>Fitness Function</subject><subject>Genetic Algorithm (GA)</subject><subject>Genetic algorithms</subject><subject>Genetic mutations</subject><subject>Information systems</subject><subject>Search problems</subject><subject>Software testing</subject><subject>System testing</subject><subject>Wheels</subject><issn>2159-3442</issn><issn>2159-3450</issn><isbn>1424424089</isbn><isbn>9781424424085</isbn><isbn>9781424424092</isbn><isbn>1424424097</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1qwzAQhNWfQJPUT5CLXsDpai1b0rGYNC2E5OJ7kOxVo9LYxlYOffu6NO0wMAMfzGEYWwlYCwHmqdrsy8N-jQB6LVVRKFA3LDFKC4lyMhi8ZXMUuUkzmcMdW_wBbe7_gcQZW_xsGMhQyQeWjOMHTMpBgRFzlm-ppcHG0LW88zzSGHljo-WXMbTv_ExTPdFlCGMMNbd9P3S2Pj2ymbefIyXXXLLqZVOVr-nusH0rn3dpMBBTZ7VHIpSuVojQGGo0GnKg8yxzjgALhw4UNQVJ7TSR9t5bAappSBY6W7LV72wgomM_hLMdvo7XN7JvQa1NlA</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>Srivastava, P.R.</creator><creator>Ramachandran, V.</creator><creator>Kumar, M.</creator><creator>Talukder, G.</creator><creator>Tiwari, V.</creator><creator>Sharma, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200811</creationdate><title>Generation of test data using meta heuristic approach</title><author>Srivastava, P.R. ; Ramachandran, V. ; Kumar, M. ; Talukder, G. ; Tiwari, V. ; Sharma, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ba8f2ee24bc7220d9ed829eb08533bbe026b2b07ed6e48b8ee8fffa107dde4683</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Ant colony optimization</topic><topic>Ant Colony Optimization (ACO)</topic><topic>Chemicals</topic><topic>Computer science</topic><topic>Fitness Function</topic><topic>Genetic Algorithm (GA)</topic><topic>Genetic algorithms</topic><topic>Genetic mutations</topic><topic>Information systems</topic><topic>Search problems</topic><topic>Software testing</topic><topic>System testing</topic><topic>Wheels</topic><toplevel>online_resources</toplevel><creatorcontrib>Srivastava, P.R.</creatorcontrib><creatorcontrib>Ramachandran, V.</creatorcontrib><creatorcontrib>Kumar, M.</creatorcontrib><creatorcontrib>Talukder, G.</creatorcontrib><creatorcontrib>Tiwari, V.</creatorcontrib><creatorcontrib>Sharma, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Srivastava, P.R.</au><au>Ramachandran, V.</au><au>Kumar, M.</au><au>Talukder, G.</au><au>Tiwari, V.</au><au>Sharma, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Generation of test data using meta heuristic approach</atitle><btitle>TENCON 2008 - 2008 IEEE Region 10 Conference</btitle><stitle>TENCON</stitle><date>2008-11</date><risdate>2008</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2159-3442</issn><eissn>2159-3450</eissn><isbn>1424424089</isbn><isbn>9781424424085</isbn><eisbn>9781424424092</eisbn><eisbn>1424424097</eisbn><abstract>Software testing is of huge importance to development of any software. The prime focus is to minimize the expenses on the testing. In software testing the major problem is generation of test data. Several metaheuristic approaches in this field have become very popular. The aim is to generate the optimum set of test data, which would still not compromise on exhaustive testing of software. Our objective is to generate such efficient test data using genetic algorithm and ant colony optimization for a given software. We have also compared the two approaches of software testing to determine which of these are effective towards generation of test data and constraints if any.</abstract><pub>IEEE</pub><doi>10.1109/TENCON.2008.4766707</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2159-3442
ispartof TENCON 2008 - 2008 IEEE Region 10 Conference, 2008, p.1-6
issn 2159-3442
2159-3450
language eng
recordid cdi_ieee_primary_4766707
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Ant colony optimization
Ant Colony Optimization (ACO)
Chemicals
Computer science
Fitness Function
Genetic Algorithm (GA)
Genetic algorithms
Genetic mutations
Information systems
Search problems
Software testing
System testing
Wheels
title Generation of test data using meta heuristic approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Generation%20of%20test%20data%20using%20meta%20heuristic%20approach&rft.btitle=TENCON%202008%20-%202008%20IEEE%20Region%2010%20Conference&rft.au=Srivastava,%20P.R.&rft.date=2008-11&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2159-3442&rft.eissn=2159-3450&rft.isbn=1424424089&rft.isbn_list=9781424424085&rft_id=info:doi/10.1109/TENCON.2008.4766707&rft_dat=%3Cieee_6IE%3E4766707%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424424092&rft.eisbn_list=1424424097&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4766707&rfr_iscdi=true