Fuzzy mid term unit commitment considering large scale wind farms

Wind power provides a new challenge to system operators. Unlike conventional power generation sources, wind power generators supply intermittent power because of uncertainty in resource. In a large-scale wind power penetration scenario, wind intermittency could oblige the system operator to allocate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Siahkali, H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1232
container_issue
container_start_page 1227
container_title
container_volume
creator Siahkali, H.
description Wind power provides a new challenge to system operators. Unlike conventional power generation sources, wind power generators supply intermittent power because of uncertainty in resource. In a large-scale wind power penetration scenario, wind intermittency could oblige the system operator to allocate the greater reserve power, in order to balance possible errors between predicted and actually wind power output. This would increase total operation cost. This paper presents a new approach to the fuzzy unit commitment problem using mixed integer nonlinear programming (MINLP), considering reserve requirement, load balance and wind power availability constraints. The modeling of constraints is an important issue in power system scheduling. These constraints are therefore ldquofuzzyrdquo in nature, and crisp treatment of them may lead to over conservative solutions. In this paper, a fuzzy optimization-based method is developed to solve power system UC problem with fuzzy objective and constraints. The problem is first converted to a crisp and separable optimization problem. Numerical testing results show that near optimal schedules are obtained, and the method can provide a good balance between reducing costs and satisfying reserve requirements.
doi_str_mv 10.1109/PECON.2008.4762664
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4762664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4762664</ieee_id><sourcerecordid>4762664</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6d308eec328ce0ae97502a7acba8e1f5f8f7bf09813bd3d232967ab9c180efc3</originalsourceid><addsrcrecordid>eNpFT81KAzEYjEhBW_sCeskL7Jq_zc-xLK0KxXrovWSTLyWyWSXZIu3T22LBYWBmYBgYhB4pqSkl5vlj2W7ea0aIroWSTEpxg6ZUMHEmacTtfxBygqaXoiGcKXmH5qV8kjNEwyU392ixOpxOR5yixyPkhA9DHLH7SimOCYaLHUr0kOOwx73Ne8DF2R7wTxw8Djan8oAmwfYF5ledoe1quW1fq_Xm5a1drKtIVTNW0nOiARxn2gGxYFRDmFXWdVYDDU3QQXWBGE1557lnnBmpbGcc1QSC4zP09DcbAWD3nWOy-bi73ue_E0hNNA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fuzzy mid term unit commitment considering large scale wind farms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Siahkali, H.</creator><creatorcontrib>Siahkali, H.</creatorcontrib><description>Wind power provides a new challenge to system operators. Unlike conventional power generation sources, wind power generators supply intermittent power because of uncertainty in resource. In a large-scale wind power penetration scenario, wind intermittency could oblige the system operator to allocate the greater reserve power, in order to balance possible errors between predicted and actually wind power output. This would increase total operation cost. This paper presents a new approach to the fuzzy unit commitment problem using mixed integer nonlinear programming (MINLP), considering reserve requirement, load balance and wind power availability constraints. The modeling of constraints is an important issue in power system scheduling. These constraints are therefore ldquofuzzyrdquo in nature, and crisp treatment of them may lead to over conservative solutions. In this paper, a fuzzy optimization-based method is developed to solve power system UC problem with fuzzy objective and constraints. The problem is first converted to a crisp and separable optimization problem. Numerical testing results show that near optimal schedules are obtained, and the method can provide a good balance between reducing costs and satisfying reserve requirements.</description><identifier>ISBN: 1424424046</identifier><identifier>ISBN: 9781424424047</identifier><identifier>EISBN: 1424424054</identifier><identifier>EISBN: 9781424424054</identifier><identifier>DOI: 10.1109/PECON.2008.4762664</identifier><identifier>LCCN: 2008903276</identifier><language>eng</language><publisher>IEEE</publisher><subject>fuzzy decision-making ; fuzzy optimization ; Fuzzy systems ; Large-scale systems ; Optimal scheduling ; Power generation ; Power supplies ; Power system modeling ; Unit commitment ; Wind energy ; Wind energy generation ; Wind farms ; wind power availability ; Wind power generation</subject><ispartof>2008 IEEE 2nd International Power and Energy Conference, 2008, p.1227-1232</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4762664$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4762664$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Siahkali, H.</creatorcontrib><title>Fuzzy mid term unit commitment considering large scale wind farms</title><title>2008 IEEE 2nd International Power and Energy Conference</title><addtitle>PECON</addtitle><description>Wind power provides a new challenge to system operators. Unlike conventional power generation sources, wind power generators supply intermittent power because of uncertainty in resource. In a large-scale wind power penetration scenario, wind intermittency could oblige the system operator to allocate the greater reserve power, in order to balance possible errors between predicted and actually wind power output. This would increase total operation cost. This paper presents a new approach to the fuzzy unit commitment problem using mixed integer nonlinear programming (MINLP), considering reserve requirement, load balance and wind power availability constraints. The modeling of constraints is an important issue in power system scheduling. These constraints are therefore ldquofuzzyrdquo in nature, and crisp treatment of them may lead to over conservative solutions. In this paper, a fuzzy optimization-based method is developed to solve power system UC problem with fuzzy objective and constraints. The problem is first converted to a crisp and separable optimization problem. Numerical testing results show that near optimal schedules are obtained, and the method can provide a good balance between reducing costs and satisfying reserve requirements.</description><subject>fuzzy decision-making</subject><subject>fuzzy optimization</subject><subject>Fuzzy systems</subject><subject>Large-scale systems</subject><subject>Optimal scheduling</subject><subject>Power generation</subject><subject>Power supplies</subject><subject>Power system modeling</subject><subject>Unit commitment</subject><subject>Wind energy</subject><subject>Wind energy generation</subject><subject>Wind farms</subject><subject>wind power availability</subject><subject>Wind power generation</subject><isbn>1424424046</isbn><isbn>9781424424047</isbn><isbn>1424424054</isbn><isbn>9781424424054</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFT81KAzEYjEhBW_sCeskL7Jq_zc-xLK0KxXrovWSTLyWyWSXZIu3T22LBYWBmYBgYhB4pqSkl5vlj2W7ea0aIroWSTEpxg6ZUMHEmacTtfxBygqaXoiGcKXmH5qV8kjNEwyU392ixOpxOR5yixyPkhA9DHLH7SimOCYaLHUr0kOOwx73Ne8DF2R7wTxw8Djan8oAmwfYF5ledoe1quW1fq_Xm5a1drKtIVTNW0nOiARxn2gGxYFRDmFXWdVYDDU3QQXWBGE1557lnnBmpbGcc1QSC4zP09DcbAWD3nWOy-bi73ue_E0hNNA</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Siahkali, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>Fuzzy mid term unit commitment considering large scale wind farms</title><author>Siahkali, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6d308eec328ce0ae97502a7acba8e1f5f8f7bf09813bd3d232967ab9c180efc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>fuzzy decision-making</topic><topic>fuzzy optimization</topic><topic>Fuzzy systems</topic><topic>Large-scale systems</topic><topic>Optimal scheduling</topic><topic>Power generation</topic><topic>Power supplies</topic><topic>Power system modeling</topic><topic>Unit commitment</topic><topic>Wind energy</topic><topic>Wind energy generation</topic><topic>Wind farms</topic><topic>wind power availability</topic><topic>Wind power generation</topic><toplevel>online_resources</toplevel><creatorcontrib>Siahkali, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Siahkali, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fuzzy mid term unit commitment considering large scale wind farms</atitle><btitle>2008 IEEE 2nd International Power and Energy Conference</btitle><stitle>PECON</stitle><date>2008-12</date><risdate>2008</risdate><spage>1227</spage><epage>1232</epage><pages>1227-1232</pages><isbn>1424424046</isbn><isbn>9781424424047</isbn><eisbn>1424424054</eisbn><eisbn>9781424424054</eisbn><abstract>Wind power provides a new challenge to system operators. Unlike conventional power generation sources, wind power generators supply intermittent power because of uncertainty in resource. In a large-scale wind power penetration scenario, wind intermittency could oblige the system operator to allocate the greater reserve power, in order to balance possible errors between predicted and actually wind power output. This would increase total operation cost. This paper presents a new approach to the fuzzy unit commitment problem using mixed integer nonlinear programming (MINLP), considering reserve requirement, load balance and wind power availability constraints. The modeling of constraints is an important issue in power system scheduling. These constraints are therefore ldquofuzzyrdquo in nature, and crisp treatment of them may lead to over conservative solutions. In this paper, a fuzzy optimization-based method is developed to solve power system UC problem with fuzzy objective and constraints. The problem is first converted to a crisp and separable optimization problem. Numerical testing results show that near optimal schedules are obtained, and the method can provide a good balance between reducing costs and satisfying reserve requirements.</abstract><pub>IEEE</pub><doi>10.1109/PECON.2008.4762664</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424424046
ispartof 2008 IEEE 2nd International Power and Energy Conference, 2008, p.1227-1232
issn
language eng
recordid cdi_ieee_primary_4762664
source IEEE Electronic Library (IEL) Conference Proceedings
subjects fuzzy decision-making
fuzzy optimization
Fuzzy systems
Large-scale systems
Optimal scheduling
Power generation
Power supplies
Power system modeling
Unit commitment
Wind energy
Wind energy generation
Wind farms
wind power availability
Wind power generation
title Fuzzy mid term unit commitment considering large scale wind farms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fuzzy%20mid%20term%20unit%20commitment%20considering%20large%20scale%20wind%20farms&rft.btitle=2008%20IEEE%202nd%20International%20Power%20and%20Energy%20Conference&rft.au=Siahkali,%20H.&rft.date=2008-12&rft.spage=1227&rft.epage=1232&rft.pages=1227-1232&rft.isbn=1424424046&rft.isbn_list=9781424424047&rft_id=info:doi/10.1109/PECON.2008.4762664&rft_dat=%3Cieee_6IE%3E4762664%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424424054&rft.eisbn_list=9781424424054&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4762664&rfr_iscdi=true