Fuzzy mid term unit commitment considering large scale wind farms
Wind power provides a new challenge to system operators. Unlike conventional power generation sources, wind power generators supply intermittent power because of uncertainty in resource. In a large-scale wind power penetration scenario, wind intermittency could oblige the system operator to allocate...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1232 |
---|---|
container_issue | |
container_start_page | 1227 |
container_title | |
container_volume | |
creator | Siahkali, H. |
description | Wind power provides a new challenge to system operators. Unlike conventional power generation sources, wind power generators supply intermittent power because of uncertainty in resource. In a large-scale wind power penetration scenario, wind intermittency could oblige the system operator to allocate the greater reserve power, in order to balance possible errors between predicted and actually wind power output. This would increase total operation cost. This paper presents a new approach to the fuzzy unit commitment problem using mixed integer nonlinear programming (MINLP), considering reserve requirement, load balance and wind power availability constraints. The modeling of constraints is an important issue in power system scheduling. These constraints are therefore ldquofuzzyrdquo in nature, and crisp treatment of them may lead to over conservative solutions. In this paper, a fuzzy optimization-based method is developed to solve power system UC problem with fuzzy objective and constraints. The problem is first converted to a crisp and separable optimization problem. Numerical testing results show that near optimal schedules are obtained, and the method can provide a good balance between reducing costs and satisfying reserve requirements. |
doi_str_mv | 10.1109/PECON.2008.4762664 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4762664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4762664</ieee_id><sourcerecordid>4762664</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6d308eec328ce0ae97502a7acba8e1f5f8f7bf09813bd3d232967ab9c180efc3</originalsourceid><addsrcrecordid>eNpFT81KAzEYjEhBW_sCeskL7Jq_zc-xLK0KxXrovWSTLyWyWSXZIu3T22LBYWBmYBgYhB4pqSkl5vlj2W7ea0aIroWSTEpxg6ZUMHEmacTtfxBygqaXoiGcKXmH5qV8kjNEwyU392ixOpxOR5yixyPkhA9DHLH7SimOCYaLHUr0kOOwx73Ne8DF2R7wTxw8Djan8oAmwfYF5ledoe1quW1fq_Xm5a1drKtIVTNW0nOiARxn2gGxYFRDmFXWdVYDDU3QQXWBGE1557lnnBmpbGcc1QSC4zP09DcbAWD3nWOy-bi73ue_E0hNNA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fuzzy mid term unit commitment considering large scale wind farms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Siahkali, H.</creator><creatorcontrib>Siahkali, H.</creatorcontrib><description>Wind power provides a new challenge to system operators. Unlike conventional power generation sources, wind power generators supply intermittent power because of uncertainty in resource. In a large-scale wind power penetration scenario, wind intermittency could oblige the system operator to allocate the greater reserve power, in order to balance possible errors between predicted and actually wind power output. This would increase total operation cost. This paper presents a new approach to the fuzzy unit commitment problem using mixed integer nonlinear programming (MINLP), considering reserve requirement, load balance and wind power availability constraints. The modeling of constraints is an important issue in power system scheduling. These constraints are therefore ldquofuzzyrdquo in nature, and crisp treatment of them may lead to over conservative solutions. In this paper, a fuzzy optimization-based method is developed to solve power system UC problem with fuzzy objective and constraints. The problem is first converted to a crisp and separable optimization problem. Numerical testing results show that near optimal schedules are obtained, and the method can provide a good balance between reducing costs and satisfying reserve requirements.</description><identifier>ISBN: 1424424046</identifier><identifier>ISBN: 9781424424047</identifier><identifier>EISBN: 1424424054</identifier><identifier>EISBN: 9781424424054</identifier><identifier>DOI: 10.1109/PECON.2008.4762664</identifier><identifier>LCCN: 2008903276</identifier><language>eng</language><publisher>IEEE</publisher><subject>fuzzy decision-making ; fuzzy optimization ; Fuzzy systems ; Large-scale systems ; Optimal scheduling ; Power generation ; Power supplies ; Power system modeling ; Unit commitment ; Wind energy ; Wind energy generation ; Wind farms ; wind power availability ; Wind power generation</subject><ispartof>2008 IEEE 2nd International Power and Energy Conference, 2008, p.1227-1232</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4762664$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4762664$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Siahkali, H.</creatorcontrib><title>Fuzzy mid term unit commitment considering large scale wind farms</title><title>2008 IEEE 2nd International Power and Energy Conference</title><addtitle>PECON</addtitle><description>Wind power provides a new challenge to system operators. Unlike conventional power generation sources, wind power generators supply intermittent power because of uncertainty in resource. In a large-scale wind power penetration scenario, wind intermittency could oblige the system operator to allocate the greater reserve power, in order to balance possible errors between predicted and actually wind power output. This would increase total operation cost. This paper presents a new approach to the fuzzy unit commitment problem using mixed integer nonlinear programming (MINLP), considering reserve requirement, load balance and wind power availability constraints. The modeling of constraints is an important issue in power system scheduling. These constraints are therefore ldquofuzzyrdquo in nature, and crisp treatment of them may lead to over conservative solutions. In this paper, a fuzzy optimization-based method is developed to solve power system UC problem with fuzzy objective and constraints. The problem is first converted to a crisp and separable optimization problem. Numerical testing results show that near optimal schedules are obtained, and the method can provide a good balance between reducing costs and satisfying reserve requirements.</description><subject>fuzzy decision-making</subject><subject>fuzzy optimization</subject><subject>Fuzzy systems</subject><subject>Large-scale systems</subject><subject>Optimal scheduling</subject><subject>Power generation</subject><subject>Power supplies</subject><subject>Power system modeling</subject><subject>Unit commitment</subject><subject>Wind energy</subject><subject>Wind energy generation</subject><subject>Wind farms</subject><subject>wind power availability</subject><subject>Wind power generation</subject><isbn>1424424046</isbn><isbn>9781424424047</isbn><isbn>1424424054</isbn><isbn>9781424424054</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFT81KAzEYjEhBW_sCeskL7Jq_zc-xLK0KxXrovWSTLyWyWSXZIu3T22LBYWBmYBgYhB4pqSkl5vlj2W7ea0aIroWSTEpxg6ZUMHEmacTtfxBygqaXoiGcKXmH5qV8kjNEwyU392ixOpxOR5yixyPkhA9DHLH7SimOCYaLHUr0kOOwx73Ne8DF2R7wTxw8Djan8oAmwfYF5ledoe1quW1fq_Xm5a1drKtIVTNW0nOiARxn2gGxYFRDmFXWdVYDDU3QQXWBGE1557lnnBmpbGcc1QSC4zP09DcbAWD3nWOy-bi73ue_E0hNNA</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Siahkali, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>Fuzzy mid term unit commitment considering large scale wind farms</title><author>Siahkali, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6d308eec328ce0ae97502a7acba8e1f5f8f7bf09813bd3d232967ab9c180efc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>fuzzy decision-making</topic><topic>fuzzy optimization</topic><topic>Fuzzy systems</topic><topic>Large-scale systems</topic><topic>Optimal scheduling</topic><topic>Power generation</topic><topic>Power supplies</topic><topic>Power system modeling</topic><topic>Unit commitment</topic><topic>Wind energy</topic><topic>Wind energy generation</topic><topic>Wind farms</topic><topic>wind power availability</topic><topic>Wind power generation</topic><toplevel>online_resources</toplevel><creatorcontrib>Siahkali, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Siahkali, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fuzzy mid term unit commitment considering large scale wind farms</atitle><btitle>2008 IEEE 2nd International Power and Energy Conference</btitle><stitle>PECON</stitle><date>2008-12</date><risdate>2008</risdate><spage>1227</spage><epage>1232</epage><pages>1227-1232</pages><isbn>1424424046</isbn><isbn>9781424424047</isbn><eisbn>1424424054</eisbn><eisbn>9781424424054</eisbn><abstract>Wind power provides a new challenge to system operators. Unlike conventional power generation sources, wind power generators supply intermittent power because of uncertainty in resource. In a large-scale wind power penetration scenario, wind intermittency could oblige the system operator to allocate the greater reserve power, in order to balance possible errors between predicted and actually wind power output. This would increase total operation cost. This paper presents a new approach to the fuzzy unit commitment problem using mixed integer nonlinear programming (MINLP), considering reserve requirement, load balance and wind power availability constraints. The modeling of constraints is an important issue in power system scheduling. These constraints are therefore ldquofuzzyrdquo in nature, and crisp treatment of them may lead to over conservative solutions. In this paper, a fuzzy optimization-based method is developed to solve power system UC problem with fuzzy objective and constraints. The problem is first converted to a crisp and separable optimization problem. Numerical testing results show that near optimal schedules are obtained, and the method can provide a good balance between reducing costs and satisfying reserve requirements.</abstract><pub>IEEE</pub><doi>10.1109/PECON.2008.4762664</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424424046 |
ispartof | 2008 IEEE 2nd International Power and Energy Conference, 2008, p.1227-1232 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4762664 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | fuzzy decision-making fuzzy optimization Fuzzy systems Large-scale systems Optimal scheduling Power generation Power supplies Power system modeling Unit commitment Wind energy Wind energy generation Wind farms wind power availability Wind power generation |
title | Fuzzy mid term unit commitment considering large scale wind farms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fuzzy%20mid%20term%20unit%20commitment%20considering%20large%20scale%20wind%20farms&rft.btitle=2008%20IEEE%202nd%20International%20Power%20and%20Energy%20Conference&rft.au=Siahkali,%20H.&rft.date=2008-12&rft.spage=1227&rft.epage=1232&rft.pages=1227-1232&rft.isbn=1424424046&rft.isbn_list=9781424424047&rft_id=info:doi/10.1109/PECON.2008.4762664&rft_dat=%3Cieee_6IE%3E4762664%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424424054&rft.eisbn_list=9781424424054&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4762664&rfr_iscdi=true |