Comparing least squares support vector machine and probabilistic neural network in transient stability assessment of a large-scale power system

This paper presents transient stability assessment of a large practical power system using two artificial neural network techniques which are the probabilistic neural network (PNN) and the least squares support vector machine (LS-SVM). The large power system is divided into five smaller areas depend...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wahab, N.I.A., Mohamed, A., Hussain, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 489
container_issue
container_start_page 485
container_title
container_volume
creator Wahab, N.I.A.
Mohamed, A.
Hussain, A.
description This paper presents transient stability assessment of a large practical power system using two artificial neural network techniques which are the probabilistic neural network (PNN) and the least squares support vector machine (LS-SVM). The large power system is divided into five smaller areas depending on the coherency of the areas when subjected to disturbances. This is to reduce the number of data sets collected for the respective areas. Transient stability of the power system is first determined based on the generator relative rotor angles obtained from time domain simulation outputs. Simulations were carried out on the test system considering three phase faults at different loading conditions. The data collected from the time domain simulations are then used as inputs to the PNN and LS-SVM. Both networks are used as classifiers to determine whether the power system is stable or unstable. Classification results show that the PNN gives faster and more accurate transient stability assessment compared to the LS-SVM.
doi_str_mv 10.1109/PECON.2008.4762523
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4762523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4762523</ieee_id><sourcerecordid>4762523</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3498ae79ecf09f110849b1f1d97c928d13e8fbea57db84e3880cfb8e7d90f4773</originalsourceid><addsrcrecordid>eNpFUM1KAzEYjEhBW_sCeskLbE022U1ylKX-QLEe9Fyyu19qdP_Ml1r6FL6yWxUcBoYZhjkMIZecLThn5vppWawfFyljeiFVnmapOCFTLlM5kmXy9N_IfEKmx6JhIlX5GZkjvrERMhO5MOfkq-jbwQbfbWkDFiPFj50NgBR3w9CHSD-hin2gra1efQfUdjUdQl_a0jceo69oB7tgm1Hivg_v1Hc0Btuhh24ciz-9eKAWERDbY9g7amljwxYSrGwDdOj3ECgeMEJ7QSbONgjzP52Rl9vlc3GfrNZ3D8XNKvFcZTER0mgLykDlmHHjKVqakjteG1WZVNdcgHYl2EzVpZYgtGaVKzWo2jAnlRIzcvW76wFgMwTf2nDY_L0pvgFHGWtb</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Comparing least squares support vector machine and probabilistic neural network in transient stability assessment of a large-scale power system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wahab, N.I.A. ; Mohamed, A. ; Hussain, A.</creator><creatorcontrib>Wahab, N.I.A. ; Mohamed, A. ; Hussain, A.</creatorcontrib><description>This paper presents transient stability assessment of a large practical power system using two artificial neural network techniques which are the probabilistic neural network (PNN) and the least squares support vector machine (LS-SVM). The large power system is divided into five smaller areas depending on the coherency of the areas when subjected to disturbances. This is to reduce the number of data sets collected for the respective areas. Transient stability of the power system is first determined based on the generator relative rotor angles obtained from time domain simulation outputs. Simulations were carried out on the test system considering three phase faults at different loading conditions. The data collected from the time domain simulations are then used as inputs to the PNN and LS-SVM. Both networks are used as classifiers to determine whether the power system is stable or unstable. Classification results show that the PNN gives faster and more accurate transient stability assessment compared to the LS-SVM.</description><identifier>ISBN: 1424424046</identifier><identifier>ISBN: 9781424424047</identifier><identifier>EISBN: 1424424054</identifier><identifier>EISBN: 9781424424054</identifier><identifier>DOI: 10.1109/PECON.2008.4762523</identifier><identifier>LCCN: 2008903276</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Large-scale systems ; Least squares methods ; least squares support vector machine ; Neural networks ; Power generation ; Power system faults ; Power system simulation ; Power system stability ; Power system transients ; probabilistic neural network ; Support vector machines ; transient stability assessment</subject><ispartof>2008 IEEE 2nd International Power and Energy Conference, 2008, p.485-489</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4762523$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4762523$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wahab, N.I.A.</creatorcontrib><creatorcontrib>Mohamed, A.</creatorcontrib><creatorcontrib>Hussain, A.</creatorcontrib><title>Comparing least squares support vector machine and probabilistic neural network in transient stability assessment of a large-scale power system</title><title>2008 IEEE 2nd International Power and Energy Conference</title><addtitle>PECON</addtitle><description>This paper presents transient stability assessment of a large practical power system using two artificial neural network techniques which are the probabilistic neural network (PNN) and the least squares support vector machine (LS-SVM). The large power system is divided into five smaller areas depending on the coherency of the areas when subjected to disturbances. This is to reduce the number of data sets collected for the respective areas. Transient stability of the power system is first determined based on the generator relative rotor angles obtained from time domain simulation outputs. Simulations were carried out on the test system considering three phase faults at different loading conditions. The data collected from the time domain simulations are then used as inputs to the PNN and LS-SVM. Both networks are used as classifiers to determine whether the power system is stable or unstable. Classification results show that the PNN gives faster and more accurate transient stability assessment compared to the LS-SVM.</description><subject>Artificial neural networks</subject><subject>Large-scale systems</subject><subject>Least squares methods</subject><subject>least squares support vector machine</subject><subject>Neural networks</subject><subject>Power generation</subject><subject>Power system faults</subject><subject>Power system simulation</subject><subject>Power system stability</subject><subject>Power system transients</subject><subject>probabilistic neural network</subject><subject>Support vector machines</subject><subject>transient stability assessment</subject><isbn>1424424046</isbn><isbn>9781424424047</isbn><isbn>1424424054</isbn><isbn>9781424424054</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUM1KAzEYjEhBW_sCeskLbE022U1ylKX-QLEe9Fyyu19qdP_Ml1r6FL6yWxUcBoYZhjkMIZecLThn5vppWawfFyljeiFVnmapOCFTLlM5kmXy9N_IfEKmx6JhIlX5GZkjvrERMhO5MOfkq-jbwQbfbWkDFiPFj50NgBR3w9CHSD-hin2gra1efQfUdjUdQl_a0jceo69oB7tgm1Hivg_v1Hc0Btuhh24ciz-9eKAWERDbY9g7amljwxYSrGwDdOj3ECgeMEJ7QSbONgjzP52Rl9vlc3GfrNZ3D8XNKvFcZTER0mgLykDlmHHjKVqakjteG1WZVNdcgHYl2EzVpZYgtGaVKzWo2jAnlRIzcvW76wFgMwTf2nDY_L0pvgFHGWtb</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Wahab, N.I.A.</creator><creator>Mohamed, A.</creator><creator>Hussain, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>Comparing least squares support vector machine and probabilistic neural network in transient stability assessment of a large-scale power system</title><author>Wahab, N.I.A. ; Mohamed, A. ; Hussain, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3498ae79ecf09f110849b1f1d97c928d13e8fbea57db84e3880cfb8e7d90f4773</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial neural networks</topic><topic>Large-scale systems</topic><topic>Least squares methods</topic><topic>least squares support vector machine</topic><topic>Neural networks</topic><topic>Power generation</topic><topic>Power system faults</topic><topic>Power system simulation</topic><topic>Power system stability</topic><topic>Power system transients</topic><topic>probabilistic neural network</topic><topic>Support vector machines</topic><topic>transient stability assessment</topic><toplevel>online_resources</toplevel><creatorcontrib>Wahab, N.I.A.</creatorcontrib><creatorcontrib>Mohamed, A.</creatorcontrib><creatorcontrib>Hussain, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wahab, N.I.A.</au><au>Mohamed, A.</au><au>Hussain, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparing least squares support vector machine and probabilistic neural network in transient stability assessment of a large-scale power system</atitle><btitle>2008 IEEE 2nd International Power and Energy Conference</btitle><stitle>PECON</stitle><date>2008-12</date><risdate>2008</risdate><spage>485</spage><epage>489</epage><pages>485-489</pages><isbn>1424424046</isbn><isbn>9781424424047</isbn><eisbn>1424424054</eisbn><eisbn>9781424424054</eisbn><abstract>This paper presents transient stability assessment of a large practical power system using two artificial neural network techniques which are the probabilistic neural network (PNN) and the least squares support vector machine (LS-SVM). The large power system is divided into five smaller areas depending on the coherency of the areas when subjected to disturbances. This is to reduce the number of data sets collected for the respective areas. Transient stability of the power system is first determined based on the generator relative rotor angles obtained from time domain simulation outputs. Simulations were carried out on the test system considering three phase faults at different loading conditions. The data collected from the time domain simulations are then used as inputs to the PNN and LS-SVM. Both networks are used as classifiers to determine whether the power system is stable or unstable. Classification results show that the PNN gives faster and more accurate transient stability assessment compared to the LS-SVM.</abstract><pub>IEEE</pub><doi>10.1109/PECON.2008.4762523</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424424046
ispartof 2008 IEEE 2nd International Power and Energy Conference, 2008, p.485-489
issn
language eng
recordid cdi_ieee_primary_4762523
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Large-scale systems
Least squares methods
least squares support vector machine
Neural networks
Power generation
Power system faults
Power system simulation
Power system stability
Power system transients
probabilistic neural network
Support vector machines
transient stability assessment
title Comparing least squares support vector machine and probabilistic neural network in transient stability assessment of a large-scale power system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A16%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparing%20least%20squares%20support%20vector%20machine%20and%20probabilistic%20neural%20network%20in%20transient%20stability%20assessment%20of%20a%20large-scale%20power%20system&rft.btitle=2008%20IEEE%202nd%20International%20Power%20and%20Energy%20Conference&rft.au=Wahab,%20N.I.A.&rft.date=2008-12&rft.spage=485&rft.epage=489&rft.pages=485-489&rft.isbn=1424424046&rft.isbn_list=9781424424047&rft_id=info:doi/10.1109/PECON.2008.4762523&rft_dat=%3Cieee_6IE%3E4762523%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424424054&rft.eisbn_list=9781424424054&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4762523&rfr_iscdi=true