On the size of arcs in projective spaces

The known results on the maximum size of an arc in a projective space or equivalently the maximum length of a maximum distance separable linear code are surveyed. It is then shown that this maximum is q+1 for all dimensions up to q in the cases that q=11 and q=13; the result for q=11 was previously...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 1995-11, Vol.41 (6), p.1649-1656
Hauptverfasser: Ali, A.H., Hirschfeld, J.W.P., Kaneta, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1656
container_issue 6
container_start_page 1649
container_title IEEE transactions on information theory
container_volume 41
creator Ali, A.H.
Hirschfeld, J.W.P.
Kaneta, H.
description The known results on the maximum size of an arc in a projective space or equivalently the maximum length of a maximum distance separable linear code are surveyed. It is then shown that this maximum is q+1 for all dimensions up to q in the cases that q=11 and q=13; the result for q=11 was previously known. The strategy is to first show that a 11-arc in PG (3,11) and a 12-arc in PG (3,13) are subsets of a twisted cubic, that is, a normal rational curve.
doi_str_mv 10.1109/18.476237
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_476237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>476237</ieee_id><sourcerecordid>9203630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-9adbf4cf1bdaeb34e97ac1ef92ee13f6107154a1c2b34c4abaab3f95d1e6439c3</originalsourceid><addsrcrecordid>eNpd0E1LxDAQBuAgCtbVg1dPxYPooWumSdrmKItfsLAXPYc0nWBKt61JV9Bfv5EuHjwNw_swDC8hl0CXAFTeQ7XkZZGz8ogkIESZyULwY5JQClUmOa9OyVkIbVy5gDwht5s-nT4wDe4H08Gm2puQuj4d_dCimdxXjEZtMJyTE6u7gBeHuSDvT49vq5dsvXl-XT2sM8MonzKpm9pyY6FuNNaMoyy1AbQyRwRmC6AlCK7B5DE0XNda18xK0QAWnEnDFuRmvhs_-NxhmNTWBYNdp3scdkHlFZdUUhrh9T_YDjvfx98USBGFECKiuxkZP4Tg0arRu6323wqo-i1MQaXmwqK9mq1DxD93CPegFGRB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195900555</pqid></control><display><type>article</type><title>On the size of arcs in projective spaces</title><source>IEEE Electronic Library (IEL)</source><creator>Ali, A.H. ; Hirschfeld, J.W.P. ; Kaneta, H.</creator><creatorcontrib>Ali, A.H. ; Hirschfeld, J.W.P. ; Kaneta, H.</creatorcontrib><description>The known results on the maximum size of an arc in a projective space or equivalently the maximum length of a maximum distance separable linear code are surveyed. It is then shown that this maximum is q+1 for all dimensions up to q in the cases that q=11 and q=13; the result for q=11 was previously known. The strategy is to first show that a 11-arc in PG (3,11) and a 12-arc in PG (3,13) are subsets of a twisted cubic, that is, a normal rational curve.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/18.476237</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algebra ; Galois fields ; Geometry ; Linear code ; Polynomials ; Symmetric matrices ; Tin ; Vectors</subject><ispartof>IEEE transactions on information theory, 1995-11, Vol.41 (6), p.1649-1656</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-9adbf4cf1bdaeb34e97ac1ef92ee13f6107154a1c2b34c4abaab3f95d1e6439c3</citedby><cites>FETCH-LOGICAL-c304t-9adbf4cf1bdaeb34e97ac1ef92ee13f6107154a1c2b34c4abaab3f95d1e6439c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/476237$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/476237$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ali, A.H.</creatorcontrib><creatorcontrib>Hirschfeld, J.W.P.</creatorcontrib><creatorcontrib>Kaneta, H.</creatorcontrib><title>On the size of arcs in projective spaces</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>The known results on the maximum size of an arc in a projective space or equivalently the maximum length of a maximum distance separable linear code are surveyed. It is then shown that this maximum is q+1 for all dimensions up to q in the cases that q=11 and q=13; the result for q=11 was previously known. The strategy is to first show that a 11-arc in PG (3,11) and a 12-arc in PG (3,13) are subsets of a twisted cubic, that is, a normal rational curve.</description><subject>Algebra</subject><subject>Galois fields</subject><subject>Geometry</subject><subject>Linear code</subject><subject>Polynomials</subject><subject>Symmetric matrices</subject><subject>Tin</subject><subject>Vectors</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNpd0E1LxDAQBuAgCtbVg1dPxYPooWumSdrmKItfsLAXPYc0nWBKt61JV9Bfv5EuHjwNw_swDC8hl0CXAFTeQ7XkZZGz8ogkIESZyULwY5JQClUmOa9OyVkIbVy5gDwht5s-nT4wDe4H08Gm2puQuj4d_dCimdxXjEZtMJyTE6u7gBeHuSDvT49vq5dsvXl-XT2sM8MonzKpm9pyY6FuNNaMoyy1AbQyRwRmC6AlCK7B5DE0XNda18xK0QAWnEnDFuRmvhs_-NxhmNTWBYNdp3scdkHlFZdUUhrh9T_YDjvfx98USBGFECKiuxkZP4Tg0arRu6323wqo-i1MQaXmwqK9mq1DxD93CPegFGRB</recordid><startdate>19951101</startdate><enddate>19951101</enddate><creator>Ali, A.H.</creator><creator>Hirschfeld, J.W.P.</creator><creator>Kaneta, H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19951101</creationdate><title>On the size of arcs in projective spaces</title><author>Ali, A.H. ; Hirschfeld, J.W.P. ; Kaneta, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-9adbf4cf1bdaeb34e97ac1ef92ee13f6107154a1c2b34c4abaab3f95d1e6439c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Algebra</topic><topic>Galois fields</topic><topic>Geometry</topic><topic>Linear code</topic><topic>Polynomials</topic><topic>Symmetric matrices</topic><topic>Tin</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, A.H.</creatorcontrib><creatorcontrib>Hirschfeld, J.W.P.</creatorcontrib><creatorcontrib>Kaneta, H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ali, A.H.</au><au>Hirschfeld, J.W.P.</au><au>Kaneta, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the size of arcs in projective spaces</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>1995-11-01</date><risdate>1995</risdate><volume>41</volume><issue>6</issue><spage>1649</spage><epage>1656</epage><pages>1649-1656</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>The known results on the maximum size of an arc in a projective space or equivalently the maximum length of a maximum distance separable linear code are surveyed. It is then shown that this maximum is q+1 for all dimensions up to q in the cases that q=11 and q=13; the result for q=11 was previously known. The strategy is to first show that a 11-arc in PG (3,11) and a 12-arc in PG (3,13) are subsets of a twisted cubic, that is, a normal rational curve.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/18.476237</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 1995-11, Vol.41 (6), p.1649-1656
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_476237
source IEEE Electronic Library (IEL)
subjects Algebra
Galois fields
Geometry
Linear code
Polynomials
Symmetric matrices
Tin
Vectors
title On the size of arcs in projective spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A49%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20size%20of%20arcs%20in%20projective%20spaces&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Ali,%20A.H.&rft.date=1995-11-01&rft.volume=41&rft.issue=6&rft.spage=1649&rft.epage=1656&rft.pages=1649-1656&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/18.476237&rft_dat=%3Cproquest_RIE%3E9203630%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195900555&rft_id=info:pmid/&rft_ieee_id=476237&rfr_iscdi=true