Robust character recognition using adaptive feature extraction

This paper describes an adaptive feature extraction method that exploits category specific information to overcome both image degradation and deformation. When recognizing multiple fonts, geometric features such as directional information of strokes are often used but they are weak against the defor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mori, M., Sawaki, M., Yamato, J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Mori, M.
Sawaki, M.
Yamato, J.
description This paper describes an adaptive feature extraction method that exploits category specific information to overcome both image degradation and deformation. When recognizing multiple fonts, geometric features such as directional information of strokes are often used but they are weak against the deformation and degradation that appear in videos and natural scenes. To tackle these problems, the proposed method estimates the degree of deformation and degradation of an input pattern by comparing the input pattern and the template of each category as category specific information. This estimation enables us to compensate the aspect ratio associated with shape and the degradation in feature values. Recognition experiments using characters extracted from videos show that the proposed method is superior to the conventional alternatives in resisting deformation and degradation.
doi_str_mv 10.1109/IVCNZ.2008.4762107
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4762107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4762107</ieee_id><sourcerecordid>4762107</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-9a212414c633a50efe39927c7d58f05ed4d7b636342c638075aba58410d2100e3</originalsourceid><addsrcrecordid>eNpFkM1Kw0AUhcefgm3tC-gmL5B4752ZZGYjSKlaKApSXLgpk-SmjmhSkono25tixdVZnI8PzhHiAiFBBHu1fJ4_vCQEYBKVpYSQHYkJKlKKtJF0LMaEGmMi0Cf_BanTvwItjsRkL7CgjDZnYtZ1bwCAZFIyeiyun5q870JUvLrWFYHbqOWi2dY--KaO-s7X28iVbhf8J0cVu9C3HPFX2MMDcS5GlXvveHbIqVjfLtbz-3j1eLec36xibyHE1hGSQlWkUjoNXLG0lrIiK7WpQHOpyixPZSoVDYiBTLvcaaMQymE0sJyKy1-tZ-bNrvUfrv3eHD6RP16KTqQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust character recognition using adaptive feature extraction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mori, M. ; Sawaki, M. ; Yamato, J.</creator><creatorcontrib>Mori, M. ; Sawaki, M. ; Yamato, J.</creatorcontrib><description>This paper describes an adaptive feature extraction method that exploits category specific information to overcome both image degradation and deformation. When recognizing multiple fonts, geometric features such as directional information of strokes are often used but they are weak against the deformation and degradation that appear in videos and natural scenes. To tackle these problems, the proposed method estimates the degree of deformation and degradation of an input pattern by comparing the input pattern and the template of each category as category specific information. This estimation enables us to compensate the aspect ratio associated with shape and the degradation in feature values. Recognition experiments using characters extracted from videos show that the proposed method is superior to the conventional alternatives in resisting deformation and degradation.</description><identifier>ISSN: 2151-2191</identifier><identifier>ISBN: 1424425824</identifier><identifier>ISBN: 1424437806</identifier><identifier>ISBN: 9781424437801</identifier><identifier>ISBN: 9781424425822</identifier><identifier>EISSN: 2151-2205</identifier><identifier>EISBN: 1424425832</identifier><identifier>EISBN: 9781424425839</identifier><identifier>DOI: 10.1109/IVCNZ.2008.4762107</identifier><identifier>LCCN: 2008904858</identifier><language>eng</language><publisher>IEEE</publisher><subject>Background noise ; category-dependent ; Character recognition ; compensation ; Data mining ; Degradation ; Feature extraction ; Layout ; OCR ; Robustness ; Shape ; Text recognition ; Videos</subject><ispartof>2008 23rd International Conference Image and Vision Computing New Zealand, 2008, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4762107$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4762107$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mori, M.</creatorcontrib><creatorcontrib>Sawaki, M.</creatorcontrib><creatorcontrib>Yamato, J.</creatorcontrib><title>Robust character recognition using adaptive feature extraction</title><title>2008 23rd International Conference Image and Vision Computing New Zealand</title><addtitle>IVCNZ</addtitle><description>This paper describes an adaptive feature extraction method that exploits category specific information to overcome both image degradation and deformation. When recognizing multiple fonts, geometric features such as directional information of strokes are often used but they are weak against the deformation and degradation that appear in videos and natural scenes. To tackle these problems, the proposed method estimates the degree of deformation and degradation of an input pattern by comparing the input pattern and the template of each category as category specific information. This estimation enables us to compensate the aspect ratio associated with shape and the degradation in feature values. Recognition experiments using characters extracted from videos show that the proposed method is superior to the conventional alternatives in resisting deformation and degradation.</description><subject>Background noise</subject><subject>category-dependent</subject><subject>Character recognition</subject><subject>compensation</subject><subject>Data mining</subject><subject>Degradation</subject><subject>Feature extraction</subject><subject>Layout</subject><subject>OCR</subject><subject>Robustness</subject><subject>Shape</subject><subject>Text recognition</subject><subject>Videos</subject><issn>2151-2191</issn><issn>2151-2205</issn><isbn>1424425824</isbn><isbn>1424437806</isbn><isbn>9781424437801</isbn><isbn>9781424425822</isbn><isbn>1424425832</isbn><isbn>9781424425839</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkM1Kw0AUhcefgm3tC-gmL5B4752ZZGYjSKlaKApSXLgpk-SmjmhSkono25tixdVZnI8PzhHiAiFBBHu1fJ4_vCQEYBKVpYSQHYkJKlKKtJF0LMaEGmMi0Cf_BanTvwItjsRkL7CgjDZnYtZ1bwCAZFIyeiyun5q870JUvLrWFYHbqOWi2dY--KaO-s7X28iVbhf8J0cVu9C3HPFX2MMDcS5GlXvveHbIqVjfLtbz-3j1eLec36xibyHE1hGSQlWkUjoNXLG0lrIiK7WpQHOpyixPZSoVDYiBTLvcaaMQymE0sJyKy1-tZ-bNrvUfrv3eHD6RP16KTqQ</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>Mori, M.</creator><creator>Sawaki, M.</creator><creator>Yamato, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200811</creationdate><title>Robust character recognition using adaptive feature extraction</title><author>Mori, M. ; Sawaki, M. ; Yamato, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-9a212414c633a50efe39927c7d58f05ed4d7b636342c638075aba58410d2100e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Background noise</topic><topic>category-dependent</topic><topic>Character recognition</topic><topic>compensation</topic><topic>Data mining</topic><topic>Degradation</topic><topic>Feature extraction</topic><topic>Layout</topic><topic>OCR</topic><topic>Robustness</topic><topic>Shape</topic><topic>Text recognition</topic><topic>Videos</topic><toplevel>online_resources</toplevel><creatorcontrib>Mori, M.</creatorcontrib><creatorcontrib>Sawaki, M.</creatorcontrib><creatorcontrib>Yamato, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mori, M.</au><au>Sawaki, M.</au><au>Yamato, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust character recognition using adaptive feature extraction</atitle><btitle>2008 23rd International Conference Image and Vision Computing New Zealand</btitle><stitle>IVCNZ</stitle><date>2008-11</date><risdate>2008</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2151-2191</issn><eissn>2151-2205</eissn><isbn>1424425824</isbn><isbn>1424437806</isbn><isbn>9781424437801</isbn><isbn>9781424425822</isbn><eisbn>1424425832</eisbn><eisbn>9781424425839</eisbn><abstract>This paper describes an adaptive feature extraction method that exploits category specific information to overcome both image degradation and deformation. When recognizing multiple fonts, geometric features such as directional information of strokes are often used but they are weak against the deformation and degradation that appear in videos and natural scenes. To tackle these problems, the proposed method estimates the degree of deformation and degradation of an input pattern by comparing the input pattern and the template of each category as category specific information. This estimation enables us to compensate the aspect ratio associated with shape and the degradation in feature values. Recognition experiments using characters extracted from videos show that the proposed method is superior to the conventional alternatives in resisting deformation and degradation.</abstract><pub>IEEE</pub><doi>10.1109/IVCNZ.2008.4762107</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2151-2191
ispartof 2008 23rd International Conference Image and Vision Computing New Zealand, 2008, p.1-6
issn 2151-2191
2151-2205
language eng
recordid cdi_ieee_primary_4762107
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Background noise
category-dependent
Character recognition
compensation
Data mining
Degradation
Feature extraction
Layout
OCR
Robustness
Shape
Text recognition
Videos
title Robust character recognition using adaptive feature extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A43%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20character%20recognition%20using%20adaptive%20feature%20extraction&rft.btitle=2008%2023rd%20International%20Conference%20Image%20and%20Vision%20Computing%20New%20Zealand&rft.au=Mori,%20M.&rft.date=2008-11&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2151-2191&rft.eissn=2151-2205&rft.isbn=1424425824&rft.isbn_list=1424437806&rft.isbn_list=9781424437801&rft.isbn_list=9781424425822&rft_id=info:doi/10.1109/IVCNZ.2008.4762107&rft_dat=%3Cieee_6IE%3E4762107%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424425832&rft.eisbn_list=9781424425839&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4762107&rfr_iscdi=true