Approximating a non-homogeneous HMM with Dynamic Spatial Dirichlet Process

In this work we present a model that uses a Dirichlet process (DP) with a dynamic spatial constraints to approximate a non-homogeneous hidden Markov model (NHMM). The coefficient of the spatial constraint, which is locally dependent on each site, modulates the time-variant transition probability mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ren, H., Liang Wu, Neskovic, P., Cooper, L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Ren, H.
Liang Wu
Neskovic, P.
Cooper, L.
description In this work we present a model that uses a Dirichlet process (DP) with a dynamic spatial constraints to approximate a non-homogeneous hidden Markov model (NHMM). The coefficient of the spatial constraint, which is locally dependent on each site, modulates the time-variant transition probability matrix. In our model, we use the DP in combination with variational Bayesian inference to estimate the local coefficients and the time-dependent structure of the hidden states. In addition, the formulation of the NHMM within the DP framework does not require the specification of the number of states. Our results demonstrate that the proposed model can uncover the hidden states when the observed data is generated by a NHMM model and the number of hidden states is unknown.
doi_str_mv 10.1109/ICPR.2008.4761919
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4761919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4761919</ieee_id><sourcerecordid>4761919</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4125070b30f6085174a28d4cdf38cb5258d0c9e1850b43409e0f302ea99e2a003</originalsourceid><addsrcrecordid>eNpVkMtOwzAURM1LIpR-AGLjH0i414_EXlZtoUWtqKD7ykmcxigvxUHQvycS3bCaxYyOjoaQB4QIEfTTer57jxiAikQSo0Z9QaY6USiYEAwTGV-SgCmOYSISefWvE_qaBAgSQxFLvCV33n8CMOBSBeR11nV9--NqM7jmSA1t2iYs27o92sa2X56utlv67YaSLk6NqV1GP7pxaiq6cL3LysoOdNe3mfX-ntwUpvJ2es4J2T8v9_NVuHl7Wc9nm9BpGEKBTEICKYciBiVHPcNULrK84CpLJZMqh0xbVBJSwQVoCwUHZo3WlhkAPiGPf1hnrT10_ajenw7nV_gvCblQbA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Approximating a non-homogeneous HMM with Dynamic Spatial Dirichlet Process</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ren, H. ; Liang Wu ; Neskovic, P. ; Cooper, L.</creator><creatorcontrib>Ren, H. ; Liang Wu ; Neskovic, P. ; Cooper, L.</creatorcontrib><description>In this work we present a model that uses a Dirichlet process (DP) with a dynamic spatial constraints to approximate a non-homogeneous hidden Markov model (NHMM). The coefficient of the spatial constraint, which is locally dependent on each site, modulates the time-variant transition probability matrix. In our model, we use the DP in combination with variational Bayesian inference to estimate the local coefficients and the time-dependent structure of the hidden states. In addition, the formulation of the NHMM within the DP framework does not require the specification of the number of states. Our results demonstrate that the proposed model can uncover the hidden states when the observed data is generated by a NHMM model and the number of hidden states is unknown.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9781424421749</identifier><identifier>ISBN: 1424421748</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424421756</identifier><identifier>EISBN: 1424421756</identifier><identifier>DOI: 10.1109/ICPR.2008.4761919</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Brain modeling ; Educational institutions ; Handwriting recognition ; Hidden Markov models ; Inference algorithms ; Physics ; Software engineering ; Speech ; State estimation</subject><ispartof>2008 19th International Conference on Pattern Recognition, 2008, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4761919$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4761919$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ren, H.</creatorcontrib><creatorcontrib>Liang Wu</creatorcontrib><creatorcontrib>Neskovic, P.</creatorcontrib><creatorcontrib>Cooper, L.</creatorcontrib><title>Approximating a non-homogeneous HMM with Dynamic Spatial Dirichlet Process</title><title>2008 19th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>In this work we present a model that uses a Dirichlet process (DP) with a dynamic spatial constraints to approximate a non-homogeneous hidden Markov model (NHMM). The coefficient of the spatial constraint, which is locally dependent on each site, modulates the time-variant transition probability matrix. In our model, we use the DP in combination with variational Bayesian inference to estimate the local coefficients and the time-dependent structure of the hidden states. In addition, the formulation of the NHMM within the DP framework does not require the specification of the number of states. Our results demonstrate that the proposed model can uncover the hidden states when the observed data is generated by a NHMM model and the number of hidden states is unknown.</description><subject>Bayesian methods</subject><subject>Brain modeling</subject><subject>Educational institutions</subject><subject>Handwriting recognition</subject><subject>Hidden Markov models</subject><subject>Inference algorithms</subject><subject>Physics</subject><subject>Software engineering</subject><subject>Speech</subject><subject>State estimation</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9781424421749</isbn><isbn>1424421748</isbn><isbn>9781424421756</isbn><isbn>1424421756</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtOwzAURM1LIpR-AGLjH0i414_EXlZtoUWtqKD7ykmcxigvxUHQvycS3bCaxYyOjoaQB4QIEfTTer57jxiAikQSo0Z9QaY6USiYEAwTGV-SgCmOYSISefWvE_qaBAgSQxFLvCV33n8CMOBSBeR11nV9--NqM7jmSA1t2iYs27o92sa2X56utlv67YaSLk6NqV1GP7pxaiq6cL3LysoOdNe3mfX-ntwUpvJ2es4J2T8v9_NVuHl7Wc9nm9BpGEKBTEICKYciBiVHPcNULrK84CpLJZMqh0xbVBJSwQVoCwUHZo3WlhkAPiGPf1hnrT10_ajenw7nV_gvCblQbA</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Ren, H.</creator><creator>Liang Wu</creator><creator>Neskovic, P.</creator><creator>Cooper, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>Approximating a non-homogeneous HMM with Dynamic Spatial Dirichlet Process</title><author>Ren, H. ; Liang Wu ; Neskovic, P. ; Cooper, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4125070b30f6085174a28d4cdf38cb5258d0c9e1850b43409e0f302ea99e2a003</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bayesian methods</topic><topic>Brain modeling</topic><topic>Educational institutions</topic><topic>Handwriting recognition</topic><topic>Hidden Markov models</topic><topic>Inference algorithms</topic><topic>Physics</topic><topic>Software engineering</topic><topic>Speech</topic><topic>State estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Ren, H.</creatorcontrib><creatorcontrib>Liang Wu</creatorcontrib><creatorcontrib>Neskovic, P.</creatorcontrib><creatorcontrib>Cooper, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ren, H.</au><au>Liang Wu</au><au>Neskovic, P.</au><au>Cooper, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Approximating a non-homogeneous HMM with Dynamic Spatial Dirichlet Process</atitle><btitle>2008 19th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2008-12</date><risdate>2008</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9781424421749</isbn><isbn>1424421748</isbn><eisbn>9781424421756</eisbn><eisbn>1424421756</eisbn><abstract>In this work we present a model that uses a Dirichlet process (DP) with a dynamic spatial constraints to approximate a non-homogeneous hidden Markov model (NHMM). The coefficient of the spatial constraint, which is locally dependent on each site, modulates the time-variant transition probability matrix. In our model, we use the DP in combination with variational Bayesian inference to estimate the local coefficients and the time-dependent structure of the hidden states. In addition, the formulation of the NHMM within the DP framework does not require the specification of the number of states. Our results demonstrate that the proposed model can uncover the hidden states when the observed data is generated by a NHMM model and the number of hidden states is unknown.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2008.4761919</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 2008 19th International Conference on Pattern Recognition, 2008, p.1-4
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_4761919
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Brain modeling
Educational institutions
Handwriting recognition
Hidden Markov models
Inference algorithms
Physics
Software engineering
Speech
State estimation
title Approximating a non-homogeneous HMM with Dynamic Spatial Dirichlet Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A44%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Approximating%20a%20non-homogeneous%20HMM%20with%20Dynamic%20Spatial%20Dirichlet%20Process&rft.btitle=2008%2019th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Ren,%20H.&rft.date=2008-12&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9781424421749&rft.isbn_list=1424421748&rft_id=info:doi/10.1109/ICPR.2008.4761919&rft_dat=%3Cieee_6IE%3E4761919%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424421756&rft.eisbn_list=1424421756&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4761919&rfr_iscdi=true