Fast multiple instance learning via L1,2 logistic regression

In this paper, we develop an efficient logistic regression model for multiple instance learning that combines L 1 and L 2 regularisation techniques. An L 1 regularised logistic regression model is first learned to find out the sparse pattern of the features. To train the L 1 model efficiently, we em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhouyu Fu, Robles-Kelly, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Zhouyu Fu
Robles-Kelly, A.
description In this paper, we develop an efficient logistic regression model for multiple instance learning that combines L 1 and L 2 regularisation techniques. An L 1 regularised logistic regression model is first learned to find out the sparse pattern of the features. To train the L 1 model efficiently, we employ a convex differentiable approximation of the L 1 cost function which can be solved by a quasi Newton method. We then train an L 2 regularised logistic regression model only on the subset of features with nonzero weights returned by the L 1 logistic regression. Experimental results demonstrate the utility and efficiency of the proposed approach compared to a number of alternatives.
doi_str_mv 10.1109/ICPR.2008.4761294
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4761294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4761294</ieee_id><sourcerecordid>4761294</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-b9c6700b028aea80cfdb7211b447829789ca583597679b6e0c69798e7524f1783</originalsourceid><addsrcrecordid>eNpVkM1Kw0AURsc_sNY-gLiZBzDx3snM3BlwI8FqIaBI92USb8JImpZMFHx7C3bj6lscOBw-IW4QckTw96vy7T1XAC7XZFF5fSIWnhxqpbVCMvZUzJQrMCNN5uwf0_5czBAMZtoavBRXKX0CKCiMm4mHZUiT3H71U9z3LOOQpjA0LHsO4xCHTn7HICu8U7LfdTFNsZEjdyOnFHfDtbhoQ594cdy5WC-f1uVLVr0-r8rHKosepqz2jSWAGpQLHBw07UdNCrHWmpw6hPomGFcYT5Z8bRka68k7JqN0i-SKubj900Zm3uzHuA3jz-b4Q_EL9-JLFw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fast multiple instance learning via L1,2 logistic regression</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhouyu Fu ; Robles-Kelly, A.</creator><creatorcontrib>Zhouyu Fu ; Robles-Kelly, A.</creatorcontrib><description>In this paper, we develop an efficient logistic regression model for multiple instance learning that combines L 1 and L 2 regularisation techniques. An L 1 regularised logistic regression model is first learned to find out the sparse pattern of the features. To train the L 1 model efficiently, we employ a convex differentiable approximation of the L 1 cost function which can be solved by a quasi Newton method. We then train an L 2 regularised logistic regression model only on the subset of features with nonzero weights returned by the L 1 logistic regression. Experimental results demonstrate the utility and efficiency of the proposed approach compared to a number of alternatives.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9781424421749</identifier><identifier>ISBN: 1424421748</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424421756</identifier><identifier>EISBN: 1424421756</identifier><identifier>DOI: 10.1109/ICPR.2008.4761294</identifier><language>eng</language><publisher>IEEE</publisher><subject>Australia ; Bandwidth ; Cost function ; Logistics ; Machine learning ; Newton method ; Optimization methods ; Supervised learning ; Support vector machine classification ; Support vector machines</subject><ispartof>2008 19th International Conference on Pattern Recognition, 2008, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4761294$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4761294$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhouyu Fu</creatorcontrib><creatorcontrib>Robles-Kelly, A.</creatorcontrib><title>Fast multiple instance learning via L1,2 logistic regression</title><title>2008 19th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>In this paper, we develop an efficient logistic regression model for multiple instance learning that combines L 1 and L 2 regularisation techniques. An L 1 regularised logistic regression model is first learned to find out the sparse pattern of the features. To train the L 1 model efficiently, we employ a convex differentiable approximation of the L 1 cost function which can be solved by a quasi Newton method. We then train an L 2 regularised logistic regression model only on the subset of features with nonzero weights returned by the L 1 logistic regression. Experimental results demonstrate the utility and efficiency of the proposed approach compared to a number of alternatives.</description><subject>Australia</subject><subject>Bandwidth</subject><subject>Cost function</subject><subject>Logistics</subject><subject>Machine learning</subject><subject>Newton method</subject><subject>Optimization methods</subject><subject>Supervised learning</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9781424421749</isbn><isbn>1424421748</isbn><isbn>9781424421756</isbn><isbn>1424421756</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1Kw0AURsc_sNY-gLiZBzDx3snM3BlwI8FqIaBI92USb8JImpZMFHx7C3bj6lscOBw-IW4QckTw96vy7T1XAC7XZFF5fSIWnhxqpbVCMvZUzJQrMCNN5uwf0_5czBAMZtoavBRXKX0CKCiMm4mHZUiT3H71U9z3LOOQpjA0LHsO4xCHTn7HICu8U7LfdTFNsZEjdyOnFHfDtbhoQ594cdy5WC-f1uVLVr0-r8rHKosepqz2jSWAGpQLHBw07UdNCrHWmpw6hPomGFcYT5Z8bRka68k7JqN0i-SKubj900Zm3uzHuA3jz-b4Q_EL9-JLFw</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Zhouyu Fu</creator><creator>Robles-Kelly, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>Fast multiple instance learning via L1,2 logistic regression</title><author>Zhouyu Fu ; Robles-Kelly, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-b9c6700b028aea80cfdb7211b447829789ca583597679b6e0c69798e7524f1783</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Australia</topic><topic>Bandwidth</topic><topic>Cost function</topic><topic>Logistics</topic><topic>Machine learning</topic><topic>Newton method</topic><topic>Optimization methods</topic><topic>Supervised learning</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhouyu Fu</creatorcontrib><creatorcontrib>Robles-Kelly, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhouyu Fu</au><au>Robles-Kelly, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fast multiple instance learning via L1,2 logistic regression</atitle><btitle>2008 19th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2008-12</date><risdate>2008</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9781424421749</isbn><isbn>1424421748</isbn><eisbn>9781424421756</eisbn><eisbn>1424421756</eisbn><abstract>In this paper, we develop an efficient logistic regression model for multiple instance learning that combines L 1 and L 2 regularisation techniques. An L 1 regularised logistic regression model is first learned to find out the sparse pattern of the features. To train the L 1 model efficiently, we employ a convex differentiable approximation of the L 1 cost function which can be solved by a quasi Newton method. We then train an L 2 regularised logistic regression model only on the subset of features with nonzero weights returned by the L 1 logistic regression. Experimental results demonstrate the utility and efficiency of the proposed approach compared to a number of alternatives.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2008.4761294</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 2008 19th International Conference on Pattern Recognition, 2008, p.1-4
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_4761294
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Australia
Bandwidth
Cost function
Logistics
Machine learning
Newton method
Optimization methods
Supervised learning
Support vector machine classification
Support vector machines
title Fast multiple instance learning via L1,2 logistic regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A19%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fast%20multiple%20instance%20learning%20via%20L1,2%20logistic%20regression&rft.btitle=2008%2019th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Zhouyu%20Fu&rft.date=2008-12&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9781424421749&rft.isbn_list=1424421748&rft_id=info:doi/10.1109/ICPR.2008.4761294&rft_dat=%3Cieee_6IE%3E4761294%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424421756&rft.eisbn_list=1424421756&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4761294&rfr_iscdi=true