Spatio-temporal patches for night background modeling by subspace learning

In this paper, a novel background model on spatio-temporal patches is introduced for video surveillance, especially for night outdoor scene, where extreme lighting conditions often cause troubles. The spatio-temporal patch, called brick, is presented to simultaneously capture spatio-temporal informa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Youdong Zhao, Haifeng Gong, Liang Lin, Yunde Jia
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Youdong Zhao
Haifeng Gong
Liang Lin
Yunde Jia
description In this paper, a novel background model on spatio-temporal patches is introduced for video surveillance, especially for night outdoor scene, where extreme lighting conditions often cause troubles. The spatio-temporal patch, called brick, is presented to simultaneously capture spatio-temporal information in surveillance video. The set of bricks of a given background patch, under all possible lighting conditions, lies in a low-dimensional subspace, which can be learned by online subspace learning. The proposed method can efficiently model the background and detect the appearance and motion variance caused by foreground. Experimental results on real data show that the proposed method is insensitive to dramatic lighting changes and achieves superior performance to two classical methods.
doi_str_mv 10.1109/ICPR.2008.4761197
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4761197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4761197</ieee_id><sourcerecordid>4761197</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ff7fcb8414c933318420c2d4d6733a23061c6cfa289be037487e399b0a427c243</originalsourceid><addsrcrecordid>eNpVkMtOwzAURM1LIpR-AGLjH0i4176J7SWKeBRVAkH3leM4aSAvOemif08lumE1mjPSWQxjdwgJIpiHVf7xmQgAnZDKEI06Y0ujNJIgEqjS7JxFQkuMFan04t9G5pJFCCnGlKV4zW6m6RtAgEx1xN6-Rjs3Qzz7bhyCbfmxup2feDUE3jf1buaFdT91GPZ9ybuh9G3T17w48GlfTKN1nrfehv4Ib9lVZdvJL0-5YJvnp03-Gq_fX1b54zpuDMxxVanKFZqQnJFSoiYBTpRUZkpKKyRk6DJXWaFN4UEq0spLYwqwJJQTJBfs_k_beO-3Y2g6Gw7b0yvyF57hUVw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spatio-temporal patches for night background modeling by subspace learning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Youdong Zhao ; Haifeng Gong ; Liang Lin ; Yunde Jia</creator><creatorcontrib>Youdong Zhao ; Haifeng Gong ; Liang Lin ; Yunde Jia</creatorcontrib><description>In this paper, a novel background model on spatio-temporal patches is introduced for video surveillance, especially for night outdoor scene, where extreme lighting conditions often cause troubles. The spatio-temporal patch, called brick, is presented to simultaneously capture spatio-temporal information in surveillance video. The set of bricks of a given background patch, under all possible lighting conditions, lies in a low-dimensional subspace, which can be learned by online subspace learning. The proposed method can efficiently model the background and detect the appearance and motion variance caused by foreground. Experimental results on real data show that the proposed method is insensitive to dramatic lighting changes and achieves superior performance to two classical methods.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9781424421749</identifier><identifier>ISBN: 1424421748</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424421756</identifier><identifier>EISBN: 1424421756</identifier><identifier>DOI: 10.1109/ICPR.2008.4761197</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Eigenvalues and eigenfunctions ; Image motion analysis ; Information technology ; Laboratories ; Layout ; Lighting ; Motion detection ; Partial response channels ; Video surveillance</subject><ispartof>2008 19th International Conference on Pattern Recognition, 2008, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4761197$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4761197$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Youdong Zhao</creatorcontrib><creatorcontrib>Haifeng Gong</creatorcontrib><creatorcontrib>Liang Lin</creatorcontrib><creatorcontrib>Yunde Jia</creatorcontrib><title>Spatio-temporal patches for night background modeling by subspace learning</title><title>2008 19th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>In this paper, a novel background model on spatio-temporal patches is introduced for video surveillance, especially for night outdoor scene, where extreme lighting conditions often cause troubles. The spatio-temporal patch, called brick, is presented to simultaneously capture spatio-temporal information in surveillance video. The set of bricks of a given background patch, under all possible lighting conditions, lies in a low-dimensional subspace, which can be learned by online subspace learning. The proposed method can efficiently model the background and detect the appearance and motion variance caused by foreground. Experimental results on real data show that the proposed method is insensitive to dramatic lighting changes and achieves superior performance to two classical methods.</description><subject>Computer science</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Image motion analysis</subject><subject>Information technology</subject><subject>Laboratories</subject><subject>Layout</subject><subject>Lighting</subject><subject>Motion detection</subject><subject>Partial response channels</subject><subject>Video surveillance</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9781424421749</isbn><isbn>1424421748</isbn><isbn>9781424421756</isbn><isbn>1424421756</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtOwzAURM1LIpR-AGLjH0i4176J7SWKeBRVAkH3leM4aSAvOemif08lumE1mjPSWQxjdwgJIpiHVf7xmQgAnZDKEI06Y0ujNJIgEqjS7JxFQkuMFan04t9G5pJFCCnGlKV4zW6m6RtAgEx1xN6-Rjs3Qzz7bhyCbfmxup2feDUE3jf1buaFdT91GPZ9ybuh9G3T17w48GlfTKN1nrfehv4Ib9lVZdvJL0-5YJvnp03-Gq_fX1b54zpuDMxxVanKFZqQnJFSoiYBTpRUZkpKKyRk6DJXWaFN4UEq0spLYwqwJJQTJBfs_k_beO-3Y2g6Gw7b0yvyF57hUVw</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Youdong Zhao</creator><creator>Haifeng Gong</creator><creator>Liang Lin</creator><creator>Yunde Jia</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>Spatio-temporal patches for night background modeling by subspace learning</title><author>Youdong Zhao ; Haifeng Gong ; Liang Lin ; Yunde Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ff7fcb8414c933318420c2d4d6733a23061c6cfa289be037487e399b0a427c243</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computer science</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Image motion analysis</topic><topic>Information technology</topic><topic>Laboratories</topic><topic>Layout</topic><topic>Lighting</topic><topic>Motion detection</topic><topic>Partial response channels</topic><topic>Video surveillance</topic><toplevel>online_resources</toplevel><creatorcontrib>Youdong Zhao</creatorcontrib><creatorcontrib>Haifeng Gong</creatorcontrib><creatorcontrib>Liang Lin</creatorcontrib><creatorcontrib>Yunde Jia</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Youdong Zhao</au><au>Haifeng Gong</au><au>Liang Lin</au><au>Yunde Jia</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spatio-temporal patches for night background modeling by subspace learning</atitle><btitle>2008 19th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2008-12</date><risdate>2008</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9781424421749</isbn><isbn>1424421748</isbn><eisbn>9781424421756</eisbn><eisbn>1424421756</eisbn><abstract>In this paper, a novel background model on spatio-temporal patches is introduced for video surveillance, especially for night outdoor scene, where extreme lighting conditions often cause troubles. The spatio-temporal patch, called brick, is presented to simultaneously capture spatio-temporal information in surveillance video. The set of bricks of a given background patch, under all possible lighting conditions, lies in a low-dimensional subspace, which can be learned by online subspace learning. The proposed method can efficiently model the background and detect the appearance and motion variance caused by foreground. Experimental results on real data show that the proposed method is insensitive to dramatic lighting changes and achieves superior performance to two classical methods.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2008.4761197</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 2008 19th International Conference on Pattern Recognition, 2008, p.1-4
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_4761197
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer science
Eigenvalues and eigenfunctions
Image motion analysis
Information technology
Laboratories
Layout
Lighting
Motion detection
Partial response channels
Video surveillance
title Spatio-temporal patches for night background modeling by subspace learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spatio-temporal%20patches%20for%20night%20background%20modeling%20by%20subspace%20learning&rft.btitle=2008%2019th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Youdong%20Zhao&rft.date=2008-12&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9781424421749&rft.isbn_list=1424421748&rft_id=info:doi/10.1109/ICPR.2008.4761197&rft_dat=%3Cieee_6IE%3E4761197%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424421756&rft.eisbn_list=1424421756&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4761197&rfr_iscdi=true