Spatio-temporal patches for night background modeling by subspace learning
In this paper, a novel background model on spatio-temporal patches is introduced for video surveillance, especially for night outdoor scene, where extreme lighting conditions often cause troubles. The spatio-temporal patch, called brick, is presented to simultaneously capture spatio-temporal informa...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Youdong Zhao Haifeng Gong Liang Lin Yunde Jia |
description | In this paper, a novel background model on spatio-temporal patches is introduced for video surveillance, especially for night outdoor scene, where extreme lighting conditions often cause troubles. The spatio-temporal patch, called brick, is presented to simultaneously capture spatio-temporal information in surveillance video. The set of bricks of a given background patch, under all possible lighting conditions, lies in a low-dimensional subspace, which can be learned by online subspace learning. The proposed method can efficiently model the background and detect the appearance and motion variance caused by foreground. Experimental results on real data show that the proposed method is insensitive to dramatic lighting changes and achieves superior performance to two classical methods. |
doi_str_mv | 10.1109/ICPR.2008.4761197 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4761197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4761197</ieee_id><sourcerecordid>4761197</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ff7fcb8414c933318420c2d4d6733a23061c6cfa289be037487e399b0a427c243</originalsourceid><addsrcrecordid>eNpVkMtOwzAURM1LIpR-AGLjH0i4176J7SWKeBRVAkH3leM4aSAvOemif08lumE1mjPSWQxjdwgJIpiHVf7xmQgAnZDKEI06Y0ujNJIgEqjS7JxFQkuMFan04t9G5pJFCCnGlKV4zW6m6RtAgEx1xN6-Rjs3Qzz7bhyCbfmxup2feDUE3jf1buaFdT91GPZ9ybuh9G3T17w48GlfTKN1nrfehv4Ib9lVZdvJL0-5YJvnp03-Gq_fX1b54zpuDMxxVanKFZqQnJFSoiYBTpRUZkpKKyRk6DJXWaFN4UEq0spLYwqwJJQTJBfs_k_beO-3Y2g6Gw7b0yvyF57hUVw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spatio-temporal patches for night background modeling by subspace learning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Youdong Zhao ; Haifeng Gong ; Liang Lin ; Yunde Jia</creator><creatorcontrib>Youdong Zhao ; Haifeng Gong ; Liang Lin ; Yunde Jia</creatorcontrib><description>In this paper, a novel background model on spatio-temporal patches is introduced for video surveillance, especially for night outdoor scene, where extreme lighting conditions often cause troubles. The spatio-temporal patch, called brick, is presented to simultaneously capture spatio-temporal information in surveillance video. The set of bricks of a given background patch, under all possible lighting conditions, lies in a low-dimensional subspace, which can be learned by online subspace learning. The proposed method can efficiently model the background and detect the appearance and motion variance caused by foreground. Experimental results on real data show that the proposed method is insensitive to dramatic lighting changes and achieves superior performance to two classical methods.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9781424421749</identifier><identifier>ISBN: 1424421748</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424421756</identifier><identifier>EISBN: 1424421756</identifier><identifier>DOI: 10.1109/ICPR.2008.4761197</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Eigenvalues and eigenfunctions ; Image motion analysis ; Information technology ; Laboratories ; Layout ; Lighting ; Motion detection ; Partial response channels ; Video surveillance</subject><ispartof>2008 19th International Conference on Pattern Recognition, 2008, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4761197$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4761197$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Youdong Zhao</creatorcontrib><creatorcontrib>Haifeng Gong</creatorcontrib><creatorcontrib>Liang Lin</creatorcontrib><creatorcontrib>Yunde Jia</creatorcontrib><title>Spatio-temporal patches for night background modeling by subspace learning</title><title>2008 19th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>In this paper, a novel background model on spatio-temporal patches is introduced for video surveillance, especially for night outdoor scene, where extreme lighting conditions often cause troubles. The spatio-temporal patch, called brick, is presented to simultaneously capture spatio-temporal information in surveillance video. The set of bricks of a given background patch, under all possible lighting conditions, lies in a low-dimensional subspace, which can be learned by online subspace learning. The proposed method can efficiently model the background and detect the appearance and motion variance caused by foreground. Experimental results on real data show that the proposed method is insensitive to dramatic lighting changes and achieves superior performance to two classical methods.</description><subject>Computer science</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Image motion analysis</subject><subject>Information technology</subject><subject>Laboratories</subject><subject>Layout</subject><subject>Lighting</subject><subject>Motion detection</subject><subject>Partial response channels</subject><subject>Video surveillance</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9781424421749</isbn><isbn>1424421748</isbn><isbn>9781424421756</isbn><isbn>1424421756</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtOwzAURM1LIpR-AGLjH0i4176J7SWKeBRVAkH3leM4aSAvOemif08lumE1mjPSWQxjdwgJIpiHVf7xmQgAnZDKEI06Y0ujNJIgEqjS7JxFQkuMFan04t9G5pJFCCnGlKV4zW6m6RtAgEx1xN6-Rjs3Qzz7bhyCbfmxup2feDUE3jf1buaFdT91GPZ9ybuh9G3T17w48GlfTKN1nrfehv4Ib9lVZdvJL0-5YJvnp03-Gq_fX1b54zpuDMxxVanKFZqQnJFSoiYBTpRUZkpKKyRk6DJXWaFN4UEq0spLYwqwJJQTJBfs_k_beO-3Y2g6Gw7b0yvyF57hUVw</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Youdong Zhao</creator><creator>Haifeng Gong</creator><creator>Liang Lin</creator><creator>Yunde Jia</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>Spatio-temporal patches for night background modeling by subspace learning</title><author>Youdong Zhao ; Haifeng Gong ; Liang Lin ; Yunde Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ff7fcb8414c933318420c2d4d6733a23061c6cfa289be037487e399b0a427c243</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computer science</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Image motion analysis</topic><topic>Information technology</topic><topic>Laboratories</topic><topic>Layout</topic><topic>Lighting</topic><topic>Motion detection</topic><topic>Partial response channels</topic><topic>Video surveillance</topic><toplevel>online_resources</toplevel><creatorcontrib>Youdong Zhao</creatorcontrib><creatorcontrib>Haifeng Gong</creatorcontrib><creatorcontrib>Liang Lin</creatorcontrib><creatorcontrib>Yunde Jia</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Youdong Zhao</au><au>Haifeng Gong</au><au>Liang Lin</au><au>Yunde Jia</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spatio-temporal patches for night background modeling by subspace learning</atitle><btitle>2008 19th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2008-12</date><risdate>2008</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9781424421749</isbn><isbn>1424421748</isbn><eisbn>9781424421756</eisbn><eisbn>1424421756</eisbn><abstract>In this paper, a novel background model on spatio-temporal patches is introduced for video surveillance, especially for night outdoor scene, where extreme lighting conditions often cause troubles. The spatio-temporal patch, called brick, is presented to simultaneously capture spatio-temporal information in surveillance video. The set of bricks of a given background patch, under all possible lighting conditions, lies in a low-dimensional subspace, which can be learned by online subspace learning. The proposed method can efficiently model the background and detect the appearance and motion variance caused by foreground. Experimental results on real data show that the proposed method is insensitive to dramatic lighting changes and achieves superior performance to two classical methods.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2008.4761197</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | 2008 19th International Conference on Pattern Recognition, 2008, p.1-4 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_4761197 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer science Eigenvalues and eigenfunctions Image motion analysis Information technology Laboratories Layout Lighting Motion detection Partial response channels Video surveillance |
title | Spatio-temporal patches for night background modeling by subspace learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spatio-temporal%20patches%20for%20night%20background%20modeling%20by%20subspace%20learning&rft.btitle=2008%2019th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Youdong%20Zhao&rft.date=2008-12&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9781424421749&rft.isbn_list=1424421748&rft_id=info:doi/10.1109/ICPR.2008.4761197&rft_dat=%3Cieee_6IE%3E4761197%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424421756&rft.eisbn_list=1424421756&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4761197&rfr_iscdi=true |