On edge structure based adaptive observation model for facial feature tracking

Facial feature tracking is a crucial and challenging task in computer vision. Recently online-learning methods have become increasingly popular on account of their strong ability to adapt to variations and have achieved good results in tracking. However, all previous work used only raw intensity to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xiaoyan Wang, Yangsheng Wang, Xuetao Feng, Mingcai Zhou
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Xiaoyan Wang
Yangsheng Wang
Xuetao Feng
Mingcai Zhou
description Facial feature tracking is a crucial and challenging task in computer vision. Recently online-learning methods have become increasingly popular on account of their strong ability to adapt to variations and have achieved good results in tracking. However, all previous work used only raw intensity to build the model, which is very sensitive to condition changes. In this work, we present a real time, fully automatic facial feature detection and tracking approach using adaptive observation models based on edge structure, which is more reliable especially when the lighting state alters during tracking. Experimental results demonstrate that using edge map measures in observation modeling can improve the accuracy and robustness of tracking.
doi_str_mv 10.1109/ICPR.2008.4761151
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4761151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4761151</ieee_id><sourcerecordid>4761151</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-b3baafd0c3fc46cabb7db7569265256a5fadd857bae099e0164ecb8083c731353</originalsourceid><addsrcrecordid>eNpVkFtLAzEUhOMNrLU_QHzJH9iak8smeZTipVCsSN_LSXK2RNtuyW4L_nuL9sWnGRi-gRnG7kCMAYR_mE7eP8ZSCDfWtgYwcMZG3jrQUmsJ1tTnbCCdgspqay7-ZdpfsgEIA5WuDVyzm677FEIKZdyAvc23nNKKeNeXfez3hXjAjhLHhLs-H4i3oaNywD63W75pE6150xbeYMx4tIS_TF8wfuXt6pZdNbjuaHTSIVs8Py0mr9Vs_jKdPM6q7EVfBRUQmySiaqKuI4ZgUzhu8LI20tRoGkzJGRuQhPckoNYUgxNORatAGTVk93-1mYiWu5I3WL6Xp2fUD1T1VAA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On edge structure based adaptive observation model for facial feature tracking</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiaoyan Wang ; Yangsheng Wang ; Xuetao Feng ; Mingcai Zhou</creator><creatorcontrib>Xiaoyan Wang ; Yangsheng Wang ; Xuetao Feng ; Mingcai Zhou</creatorcontrib><description>Facial feature tracking is a crucial and challenging task in computer vision. Recently online-learning methods have become increasingly popular on account of their strong ability to adapt to variations and have achieved good results in tracking. However, all previous work used only raw intensity to build the model, which is very sensitive to condition changes. In this work, we present a real time, fully automatic facial feature detection and tracking approach using adaptive observation models based on edge structure, which is more reliable especially when the lighting state alters during tracking. Experimental results demonstrate that using edge map measures in observation modeling can improve the accuracy and robustness of tracking.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9781424421749</identifier><identifier>ISBN: 1424421748</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424421756</identifier><identifier>EISBN: 1424421756</identifier><identifier>DOI: 10.1109/ICPR.2008.4761151</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Automation ; Computer graphics ; Computer vision ; Deformable models ; Face detection ; Facial features ; Image edge detection ; Robustness ; Target tracking</subject><ispartof>2008 19th International Conference on Pattern Recognition, 2008, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4761151$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4761151$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiaoyan Wang</creatorcontrib><creatorcontrib>Yangsheng Wang</creatorcontrib><creatorcontrib>Xuetao Feng</creatorcontrib><creatorcontrib>Mingcai Zhou</creatorcontrib><title>On edge structure based adaptive observation model for facial feature tracking</title><title>2008 19th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>Facial feature tracking is a crucial and challenging task in computer vision. Recently online-learning methods have become increasingly popular on account of their strong ability to adapt to variations and have achieved good results in tracking. However, all previous work used only raw intensity to build the model, which is very sensitive to condition changes. In this work, we present a real time, fully automatic facial feature detection and tracking approach using adaptive observation models based on edge structure, which is more reliable especially when the lighting state alters during tracking. Experimental results demonstrate that using edge map measures in observation modeling can improve the accuracy and robustness of tracking.</description><subject>Application software</subject><subject>Automation</subject><subject>Computer graphics</subject><subject>Computer vision</subject><subject>Deformable models</subject><subject>Face detection</subject><subject>Facial features</subject><subject>Image edge detection</subject><subject>Robustness</subject><subject>Target tracking</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9781424421749</isbn><isbn>1424421748</isbn><isbn>9781424421756</isbn><isbn>1424421756</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkFtLAzEUhOMNrLU_QHzJH9iak8smeZTipVCsSN_LSXK2RNtuyW4L_nuL9sWnGRi-gRnG7kCMAYR_mE7eP8ZSCDfWtgYwcMZG3jrQUmsJ1tTnbCCdgspqay7-ZdpfsgEIA5WuDVyzm677FEIKZdyAvc23nNKKeNeXfez3hXjAjhLHhLs-H4i3oaNywD63W75pE6150xbeYMx4tIS_TF8wfuXt6pZdNbjuaHTSIVs8Py0mr9Vs_jKdPM6q7EVfBRUQmySiaqKuI4ZgUzhu8LI20tRoGkzJGRuQhPckoNYUgxNORatAGTVk93-1mYiWu5I3WL6Xp2fUD1T1VAA</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Xiaoyan Wang</creator><creator>Yangsheng Wang</creator><creator>Xuetao Feng</creator><creator>Mingcai Zhou</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>On edge structure based adaptive observation model for facial feature tracking</title><author>Xiaoyan Wang ; Yangsheng Wang ; Xuetao Feng ; Mingcai Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-b3baafd0c3fc46cabb7db7569265256a5fadd857bae099e0164ecb8083c731353</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Application software</topic><topic>Automation</topic><topic>Computer graphics</topic><topic>Computer vision</topic><topic>Deformable models</topic><topic>Face detection</topic><topic>Facial features</topic><topic>Image edge detection</topic><topic>Robustness</topic><topic>Target tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiaoyan Wang</creatorcontrib><creatorcontrib>Yangsheng Wang</creatorcontrib><creatorcontrib>Xuetao Feng</creatorcontrib><creatorcontrib>Mingcai Zhou</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiaoyan Wang</au><au>Yangsheng Wang</au><au>Xuetao Feng</au><au>Mingcai Zhou</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On edge structure based adaptive observation model for facial feature tracking</atitle><btitle>2008 19th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2008-12</date><risdate>2008</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9781424421749</isbn><isbn>1424421748</isbn><eisbn>9781424421756</eisbn><eisbn>1424421756</eisbn><abstract>Facial feature tracking is a crucial and challenging task in computer vision. Recently online-learning methods have become increasingly popular on account of their strong ability to adapt to variations and have achieved good results in tracking. However, all previous work used only raw intensity to build the model, which is very sensitive to condition changes. In this work, we present a real time, fully automatic facial feature detection and tracking approach using adaptive observation models based on edge structure, which is more reliable especially when the lighting state alters during tracking. Experimental results demonstrate that using edge map measures in observation modeling can improve the accuracy and robustness of tracking.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2008.4761151</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 2008 19th International Conference on Pattern Recognition, 2008, p.1-4
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_4761151
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Automation
Computer graphics
Computer vision
Deformable models
Face detection
Facial features
Image edge detection
Robustness
Target tracking
title On edge structure based adaptive observation model for facial feature tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A16%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20edge%20structure%20based%20adaptive%20observation%20model%20for%20facial%20feature%20tracking&rft.btitle=2008%2019th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Xiaoyan%20Wang&rft.date=2008-12&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9781424421749&rft.isbn_list=1424421748&rft_id=info:doi/10.1109/ICPR.2008.4761151&rft_dat=%3Cieee_6IE%3E4761151%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424421756&rft.eisbn_list=1424421756&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4761151&rfr_iscdi=true