Optimal Tuning for Linear and Nonlinear Parameters of Power System Stabilizers in Hybrid System Modeling
This paper focuses on the systematic optimal tuning of the power system stabilizer (PSS), which can improve the system damping performance immediately following a large disturbance. As the PSS consists of both linear parameters (such as the gain and time constant) and nonsmooth nonlinear parameters...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2009-01, Vol.45 (1), p.87-97 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 97 |
---|---|
container_issue | 1 |
container_start_page | 87 |
container_title | IEEE transactions on industry applications |
container_volume | 45 |
creator | Seung-Mook Baek Jung-Wook Park Hiskens, I.A. |
description | This paper focuses on the systematic optimal tuning of the power system stabilizer (PSS), which can improve the system damping performance immediately following a large disturbance. As the PSS consists of both linear parameters (such as the gain and time constant) and nonsmooth nonlinear parameters (such as saturation limits of the PSS), two methods are applied for the optimal tuning of all parameters. One is to use the optimization technique based on the Hessian matrix estimated by the feedforward neural network, which identifies the first-order derivatives obtained by the trajectory sensitivities, for the nonlinear parameters. Moreover, the other is to use the eigenvalue analysis for the linear parameters. The performances of parameters optimized by the proposed method are evaluated by the case studies based on time-domain simulation and real-time hardware implementation. |
doi_str_mv | 10.1109/TIA.2008.2009478 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4757396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4757396</ieee_id><sourcerecordid>2291795721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-b128dee144b4ad67b6121f27c9e99879d7d33632b986b6fcfba4b1d396a674203</originalsourceid><addsrcrecordid>eNqFkUFPHDEMhSPUSmxp75W4RFx6miWZZJL4iBAUpKUgsT1HyYwHgmYnSzIrtPz6ZrXAoRcutmx_fpL9CPnJ2ZxzBqfL67N5zZjZBZDaHJAZBwEVCKW_kFlpigoA5CH5lvMTY1w2XM7I4-16Cis30OVmDOMD7WOiizCiS9SNHf0Tx2Ff3bnkVjhhyjT29C6-YKL32zzhit5PzochvO5mYaRXW59C9z68iR0WiYfv5Gvvhow_3vIR-Xt5sTy_qha3v6_PzxZVKxo5VZ7XpkPkUnrpOqW94jXva90CAhgNne6EUKL2YJRXfdt7Jz3vBCintKyZOCK_9rrrFJ83mCe7CrnFYXAjxk22RmktDW_qT0kthao5gCrkyX_kU9yksZxhTaOAcSFNgdgealPMOWFv16l8Nm0tZ3ZnkS0W2Z1F9s2isnK8XwmI-IFL3ehyj_gHchqMbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856901348</pqid></control><display><type>article</type><title>Optimal Tuning for Linear and Nonlinear Parameters of Power System Stabilizers in Hybrid System Modeling</title><source>IEEE Electronic Library (IEL)</source><creator>Seung-Mook Baek ; Jung-Wook Park ; Hiskens, I.A.</creator><creatorcontrib>Seung-Mook Baek ; Jung-Wook Park ; Hiskens, I.A.</creatorcontrib><description>This paper focuses on the systematic optimal tuning of the power system stabilizer (PSS), which can improve the system damping performance immediately following a large disturbance. As the PSS consists of both linear parameters (such as the gain and time constant) and nonsmooth nonlinear parameters (such as saturation limits of the PSS), two methods are applied for the optimal tuning of all parameters. One is to use the optimization technique based on the Hessian matrix estimated by the feedforward neural network, which identifies the first-order derivatives obtained by the trajectory sensitivities, for the nonlinear parameters. Moreover, the other is to use the eigenvalue analysis for the linear parameters. The performances of parameters optimized by the proposed method are evaluated by the case studies based on time-domain simulation and real-time hardware implementation.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2008.2009478</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Damping ; Eigenvalue analysis ; Eigenvalues and eigenfunctions ; feedforward neural network (FFNN) ; Feedforward neural networks ; Hardware ; Hessian matrix estimation ; Hybrid power systems ; hybrid system ; Neural networks ; nonlinearities ; Optimization methods ; parameter optimization ; Performance evaluation ; Power system modeling ; power system stabilizer (PSS) ; Time domain analysis ; trajectory sensitivities</subject><ispartof>IEEE transactions on industry applications, 2009-01, Vol.45 (1), p.87-97</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-b128dee144b4ad67b6121f27c9e99879d7d33632b986b6fcfba4b1d396a674203</citedby><cites>FETCH-LOGICAL-c354t-b128dee144b4ad67b6121f27c9e99879d7d33632b986b6fcfba4b1d396a674203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4757396$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4757396$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Seung-Mook Baek</creatorcontrib><creatorcontrib>Jung-Wook Park</creatorcontrib><creatorcontrib>Hiskens, I.A.</creatorcontrib><title>Optimal Tuning for Linear and Nonlinear Parameters of Power System Stabilizers in Hybrid System Modeling</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>This paper focuses on the systematic optimal tuning of the power system stabilizer (PSS), which can improve the system damping performance immediately following a large disturbance. As the PSS consists of both linear parameters (such as the gain and time constant) and nonsmooth nonlinear parameters (such as saturation limits of the PSS), two methods are applied for the optimal tuning of all parameters. One is to use the optimization technique based on the Hessian matrix estimated by the feedforward neural network, which identifies the first-order derivatives obtained by the trajectory sensitivities, for the nonlinear parameters. Moreover, the other is to use the eigenvalue analysis for the linear parameters. The performances of parameters optimized by the proposed method are evaluated by the case studies based on time-domain simulation and real-time hardware implementation.</description><subject>Damping</subject><subject>Eigenvalue analysis</subject><subject>Eigenvalues and eigenfunctions</subject><subject>feedforward neural network (FFNN)</subject><subject>Feedforward neural networks</subject><subject>Hardware</subject><subject>Hessian matrix estimation</subject><subject>Hybrid power systems</subject><subject>hybrid system</subject><subject>Neural networks</subject><subject>nonlinearities</subject><subject>Optimization methods</subject><subject>parameter optimization</subject><subject>Performance evaluation</subject><subject>Power system modeling</subject><subject>power system stabilizer (PSS)</subject><subject>Time domain analysis</subject><subject>trajectory sensitivities</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkUFPHDEMhSPUSmxp75W4RFx6miWZZJL4iBAUpKUgsT1HyYwHgmYnSzIrtPz6ZrXAoRcutmx_fpL9CPnJ2ZxzBqfL67N5zZjZBZDaHJAZBwEVCKW_kFlpigoA5CH5lvMTY1w2XM7I4-16Cis30OVmDOMD7WOiizCiS9SNHf0Tx2Ff3bnkVjhhyjT29C6-YKL32zzhit5PzochvO5mYaRXW59C9z68iR0WiYfv5Gvvhow_3vIR-Xt5sTy_qha3v6_PzxZVKxo5VZ7XpkPkUnrpOqW94jXva90CAhgNne6EUKL2YJRXfdt7Jz3vBCintKyZOCK_9rrrFJ83mCe7CrnFYXAjxk22RmktDW_qT0kthao5gCrkyX_kU9yksZxhTaOAcSFNgdgealPMOWFv16l8Nm0tZ3ZnkS0W2Z1F9s2isnK8XwmI-IFL3ehyj_gHchqMbw</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Seung-Mook Baek</creator><creator>Jung-Wook Park</creator><creator>Hiskens, I.A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>200901</creationdate><title>Optimal Tuning for Linear and Nonlinear Parameters of Power System Stabilizers in Hybrid System Modeling</title><author>Seung-Mook Baek ; Jung-Wook Park ; Hiskens, I.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-b128dee144b4ad67b6121f27c9e99879d7d33632b986b6fcfba4b1d396a674203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Damping</topic><topic>Eigenvalue analysis</topic><topic>Eigenvalues and eigenfunctions</topic><topic>feedforward neural network (FFNN)</topic><topic>Feedforward neural networks</topic><topic>Hardware</topic><topic>Hessian matrix estimation</topic><topic>Hybrid power systems</topic><topic>hybrid system</topic><topic>Neural networks</topic><topic>nonlinearities</topic><topic>Optimization methods</topic><topic>parameter optimization</topic><topic>Performance evaluation</topic><topic>Power system modeling</topic><topic>power system stabilizer (PSS)</topic><topic>Time domain analysis</topic><topic>trajectory sensitivities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seung-Mook Baek</creatorcontrib><creatorcontrib>Jung-Wook Park</creatorcontrib><creatorcontrib>Hiskens, I.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seung-Mook Baek</au><au>Jung-Wook Park</au><au>Hiskens, I.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Tuning for Linear and Nonlinear Parameters of Power System Stabilizers in Hybrid System Modeling</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2009-01</date><risdate>2009</risdate><volume>45</volume><issue>1</issue><spage>87</spage><epage>97</epage><pages>87-97</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>This paper focuses on the systematic optimal tuning of the power system stabilizer (PSS), which can improve the system damping performance immediately following a large disturbance. As the PSS consists of both linear parameters (such as the gain and time constant) and nonsmooth nonlinear parameters (such as saturation limits of the PSS), two methods are applied for the optimal tuning of all parameters. One is to use the optimization technique based on the Hessian matrix estimated by the feedforward neural network, which identifies the first-order derivatives obtained by the trajectory sensitivities, for the nonlinear parameters. Moreover, the other is to use the eigenvalue analysis for the linear parameters. The performances of parameters optimized by the proposed method are evaluated by the case studies based on time-domain simulation and real-time hardware implementation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2008.2009478</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2009-01, Vol.45 (1), p.87-97 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_ieee_primary_4757396 |
source | IEEE Electronic Library (IEL) |
subjects | Damping Eigenvalue analysis Eigenvalues and eigenfunctions feedforward neural network (FFNN) Feedforward neural networks Hardware Hessian matrix estimation Hybrid power systems hybrid system Neural networks nonlinearities Optimization methods parameter optimization Performance evaluation Power system modeling power system stabilizer (PSS) Time domain analysis trajectory sensitivities |
title | Optimal Tuning for Linear and Nonlinear Parameters of Power System Stabilizers in Hybrid System Modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A16%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Tuning%20for%20Linear%20and%20Nonlinear%20Parameters%20of%20Power%20System%20Stabilizers%20in%20Hybrid%20System%20Modeling&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Seung-Mook%20Baek&rft.date=2009-01&rft.volume=45&rft.issue=1&rft.spage=87&rft.epage=97&rft.pages=87-97&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2008.2009478&rft_dat=%3Cproquest_RIE%3E2291795721%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856901348&rft_id=info:pmid/&rft_ieee_id=4757396&rfr_iscdi=true |