Optimal Tuning for Linear and Nonlinear Parameters of Power System Stabilizers in Hybrid System Modeling

This paper focuses on the systematic optimal tuning of the power system stabilizer (PSS), which can improve the system damping performance immediately following a large disturbance. As the PSS consists of both linear parameters (such as the gain and time constant) and nonsmooth nonlinear parameters...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2009-01, Vol.45 (1), p.87-97
Hauptverfasser: Seung-Mook Baek, Jung-Wook Park, Hiskens, I.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97
container_issue 1
container_start_page 87
container_title IEEE transactions on industry applications
container_volume 45
creator Seung-Mook Baek
Jung-Wook Park
Hiskens, I.A.
description This paper focuses on the systematic optimal tuning of the power system stabilizer (PSS), which can improve the system damping performance immediately following a large disturbance. As the PSS consists of both linear parameters (such as the gain and time constant) and nonsmooth nonlinear parameters (such as saturation limits of the PSS), two methods are applied for the optimal tuning of all parameters. One is to use the optimization technique based on the Hessian matrix estimated by the feedforward neural network, which identifies the first-order derivatives obtained by the trajectory sensitivities, for the nonlinear parameters. Moreover, the other is to use the eigenvalue analysis for the linear parameters. The performances of parameters optimized by the proposed method are evaluated by the case studies based on time-domain simulation and real-time hardware implementation.
doi_str_mv 10.1109/TIA.2008.2009478
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4757396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4757396</ieee_id><sourcerecordid>2291795721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-b128dee144b4ad67b6121f27c9e99879d7d33632b986b6fcfba4b1d396a674203</originalsourceid><addsrcrecordid>eNqFkUFPHDEMhSPUSmxp75W4RFx6miWZZJL4iBAUpKUgsT1HyYwHgmYnSzIrtPz6ZrXAoRcutmx_fpL9CPnJ2ZxzBqfL67N5zZjZBZDaHJAZBwEVCKW_kFlpigoA5CH5lvMTY1w2XM7I4-16Cis30OVmDOMD7WOiizCiS9SNHf0Tx2Ff3bnkVjhhyjT29C6-YKL32zzhit5PzochvO5mYaRXW59C9z68iR0WiYfv5Gvvhow_3vIR-Xt5sTy_qha3v6_PzxZVKxo5VZ7XpkPkUnrpOqW94jXva90CAhgNne6EUKL2YJRXfdt7Jz3vBCintKyZOCK_9rrrFJ83mCe7CrnFYXAjxk22RmktDW_qT0kthao5gCrkyX_kU9yksZxhTaOAcSFNgdgealPMOWFv16l8Nm0tZ3ZnkS0W2Z1F9s2isnK8XwmI-IFL3ehyj_gHchqMbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856901348</pqid></control><display><type>article</type><title>Optimal Tuning for Linear and Nonlinear Parameters of Power System Stabilizers in Hybrid System Modeling</title><source>IEEE Electronic Library (IEL)</source><creator>Seung-Mook Baek ; Jung-Wook Park ; Hiskens, I.A.</creator><creatorcontrib>Seung-Mook Baek ; Jung-Wook Park ; Hiskens, I.A.</creatorcontrib><description>This paper focuses on the systematic optimal tuning of the power system stabilizer (PSS), which can improve the system damping performance immediately following a large disturbance. As the PSS consists of both linear parameters (such as the gain and time constant) and nonsmooth nonlinear parameters (such as saturation limits of the PSS), two methods are applied for the optimal tuning of all parameters. One is to use the optimization technique based on the Hessian matrix estimated by the feedforward neural network, which identifies the first-order derivatives obtained by the trajectory sensitivities, for the nonlinear parameters. Moreover, the other is to use the eigenvalue analysis for the linear parameters. The performances of parameters optimized by the proposed method are evaluated by the case studies based on time-domain simulation and real-time hardware implementation.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2008.2009478</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Damping ; Eigenvalue analysis ; Eigenvalues and eigenfunctions ; feedforward neural network (FFNN) ; Feedforward neural networks ; Hardware ; Hessian matrix estimation ; Hybrid power systems ; hybrid system ; Neural networks ; nonlinearities ; Optimization methods ; parameter optimization ; Performance evaluation ; Power system modeling ; power system stabilizer (PSS) ; Time domain analysis ; trajectory sensitivities</subject><ispartof>IEEE transactions on industry applications, 2009-01, Vol.45 (1), p.87-97</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-b128dee144b4ad67b6121f27c9e99879d7d33632b986b6fcfba4b1d396a674203</citedby><cites>FETCH-LOGICAL-c354t-b128dee144b4ad67b6121f27c9e99879d7d33632b986b6fcfba4b1d396a674203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4757396$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4757396$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Seung-Mook Baek</creatorcontrib><creatorcontrib>Jung-Wook Park</creatorcontrib><creatorcontrib>Hiskens, I.A.</creatorcontrib><title>Optimal Tuning for Linear and Nonlinear Parameters of Power System Stabilizers in Hybrid System Modeling</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>This paper focuses on the systematic optimal tuning of the power system stabilizer (PSS), which can improve the system damping performance immediately following a large disturbance. As the PSS consists of both linear parameters (such as the gain and time constant) and nonsmooth nonlinear parameters (such as saturation limits of the PSS), two methods are applied for the optimal tuning of all parameters. One is to use the optimization technique based on the Hessian matrix estimated by the feedforward neural network, which identifies the first-order derivatives obtained by the trajectory sensitivities, for the nonlinear parameters. Moreover, the other is to use the eigenvalue analysis for the linear parameters. The performances of parameters optimized by the proposed method are evaluated by the case studies based on time-domain simulation and real-time hardware implementation.</description><subject>Damping</subject><subject>Eigenvalue analysis</subject><subject>Eigenvalues and eigenfunctions</subject><subject>feedforward neural network (FFNN)</subject><subject>Feedforward neural networks</subject><subject>Hardware</subject><subject>Hessian matrix estimation</subject><subject>Hybrid power systems</subject><subject>hybrid system</subject><subject>Neural networks</subject><subject>nonlinearities</subject><subject>Optimization methods</subject><subject>parameter optimization</subject><subject>Performance evaluation</subject><subject>Power system modeling</subject><subject>power system stabilizer (PSS)</subject><subject>Time domain analysis</subject><subject>trajectory sensitivities</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkUFPHDEMhSPUSmxp75W4RFx6miWZZJL4iBAUpKUgsT1HyYwHgmYnSzIrtPz6ZrXAoRcutmx_fpL9CPnJ2ZxzBqfL67N5zZjZBZDaHJAZBwEVCKW_kFlpigoA5CH5lvMTY1w2XM7I4-16Cis30OVmDOMD7WOiizCiS9SNHf0Tx2Ff3bnkVjhhyjT29C6-YKL32zzhit5PzochvO5mYaRXW59C9z68iR0WiYfv5Gvvhow_3vIR-Xt5sTy_qha3v6_PzxZVKxo5VZ7XpkPkUnrpOqW94jXva90CAhgNne6EUKL2YJRXfdt7Jz3vBCintKyZOCK_9rrrFJ83mCe7CrnFYXAjxk22RmktDW_qT0kthao5gCrkyX_kU9yksZxhTaOAcSFNgdgealPMOWFv16l8Nm0tZ3ZnkS0W2Z1F9s2isnK8XwmI-IFL3ehyj_gHchqMbw</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Seung-Mook Baek</creator><creator>Jung-Wook Park</creator><creator>Hiskens, I.A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>200901</creationdate><title>Optimal Tuning for Linear and Nonlinear Parameters of Power System Stabilizers in Hybrid System Modeling</title><author>Seung-Mook Baek ; Jung-Wook Park ; Hiskens, I.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-b128dee144b4ad67b6121f27c9e99879d7d33632b986b6fcfba4b1d396a674203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Damping</topic><topic>Eigenvalue analysis</topic><topic>Eigenvalues and eigenfunctions</topic><topic>feedforward neural network (FFNN)</topic><topic>Feedforward neural networks</topic><topic>Hardware</topic><topic>Hessian matrix estimation</topic><topic>Hybrid power systems</topic><topic>hybrid system</topic><topic>Neural networks</topic><topic>nonlinearities</topic><topic>Optimization methods</topic><topic>parameter optimization</topic><topic>Performance evaluation</topic><topic>Power system modeling</topic><topic>power system stabilizer (PSS)</topic><topic>Time domain analysis</topic><topic>trajectory sensitivities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seung-Mook Baek</creatorcontrib><creatorcontrib>Jung-Wook Park</creatorcontrib><creatorcontrib>Hiskens, I.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seung-Mook Baek</au><au>Jung-Wook Park</au><au>Hiskens, I.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Tuning for Linear and Nonlinear Parameters of Power System Stabilizers in Hybrid System Modeling</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2009-01</date><risdate>2009</risdate><volume>45</volume><issue>1</issue><spage>87</spage><epage>97</epage><pages>87-97</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>This paper focuses on the systematic optimal tuning of the power system stabilizer (PSS), which can improve the system damping performance immediately following a large disturbance. As the PSS consists of both linear parameters (such as the gain and time constant) and nonsmooth nonlinear parameters (such as saturation limits of the PSS), two methods are applied for the optimal tuning of all parameters. One is to use the optimization technique based on the Hessian matrix estimated by the feedforward neural network, which identifies the first-order derivatives obtained by the trajectory sensitivities, for the nonlinear parameters. Moreover, the other is to use the eigenvalue analysis for the linear parameters. The performances of parameters optimized by the proposed method are evaluated by the case studies based on time-domain simulation and real-time hardware implementation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2008.2009478</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2009-01, Vol.45 (1), p.87-97
issn 0093-9994
1939-9367
language eng
recordid cdi_ieee_primary_4757396
source IEEE Electronic Library (IEL)
subjects Damping
Eigenvalue analysis
Eigenvalues and eigenfunctions
feedforward neural network (FFNN)
Feedforward neural networks
Hardware
Hessian matrix estimation
Hybrid power systems
hybrid system
Neural networks
nonlinearities
Optimization methods
parameter optimization
Performance evaluation
Power system modeling
power system stabilizer (PSS)
Time domain analysis
trajectory sensitivities
title Optimal Tuning for Linear and Nonlinear Parameters of Power System Stabilizers in Hybrid System Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A16%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Tuning%20for%20Linear%20and%20Nonlinear%20Parameters%20of%20Power%20System%20Stabilizers%20in%20Hybrid%20System%20Modeling&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Seung-Mook%20Baek&rft.date=2009-01&rft.volume=45&rft.issue=1&rft.spage=87&rft.epage=97&rft.pages=87-97&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2008.2009478&rft_dat=%3Cproquest_RIE%3E2291795721%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856901348&rft_id=info:pmid/&rft_ieee_id=4757396&rfr_iscdi=true