Condition Monitoring of Equipment Using a Joint RSAR and Fuzzy ART Neural Network Method
Working conditions are monitoring parameters are huge and neural network learning time too long in the condition monitoring of multi word condition equipment. To improve monitoring efficiency, a joint rough set attribute reduction (RSAR) and Fuzzy ART (adaptive resonance theory) neural network metho...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 52 |
---|---|
container_issue | |
container_start_page | 48 |
container_title | |
container_volume | 2 |
creator | Jihai Gu Xianfeng Fan Ruoming An Ye Tian |
description | Working conditions are monitoring parameters are huge and neural network learning time too long in the condition monitoring of multi word condition equipment. To improve monitoring efficiency, a joint rough set attribute reduction (RSAR) and Fuzzy ART (adaptive resonance theory) neural network method is proposed in this study. The dimension of an input vector to Fuzzy ART neural networks can be reduced through RSAR. The updated vectors are used to train Fuzzy ART neural networks. An example is investigated to evaluate the proposed method in this study. Analysis results indicate that the proposed method can save great learning time without losing monitoring capability. Additionally, sensor abnormality and signal transmission issues may be detected as well. |
doi_str_mv | 10.1109/PACIIA.2008.337 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4756732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4756732</ieee_id><sourcerecordid>4756732</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4a435ca3aa02146338e7b691a21e6bfb5627e9b1e887d26260c97293c7134a43</originalsourceid><addsrcrecordid>eNotjE9PwjAchpsYEgU5e_DSLzD89c_a9bgsoDOgZmDijXRbp1Voceti4NPLoqcn75M8L0I3BGaEgLp7SbM8T2cUIJkxJi_QGKRQMeMK6AiNB68g4YJeomnXfQIAUUIS4FfoLfOutsF6h1fe2eBb696xb_D8u7eHvXEBv3aD0vjR2_Mq1mmBtavxoj-djjgtNvjJ9K3enRF-fPuFVyZ8-PoajRq968z0nxO0Xsw32UO0fL7Ps3QZWQUh4pqzuNJMa6CEC8YSI0uhiKbEiLIpY0GlUSUxSSJrKqiASkmqWCUJG9oJuv17tcaY7aG1e90et1zGQjLKfgGwo0-f</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Condition Monitoring of Equipment Using a Joint RSAR and Fuzzy ART Neural Network Method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jihai Gu ; Xianfeng Fan ; Ruoming An ; Ye Tian</creator><creatorcontrib>Jihai Gu ; Xianfeng Fan ; Ruoming An ; Ye Tian</creatorcontrib><description>Working conditions are monitoring parameters are huge and neural network learning time too long in the condition monitoring of multi word condition equipment. To improve monitoring efficiency, a joint rough set attribute reduction (RSAR) and Fuzzy ART (adaptive resonance theory) neural network method is proposed in this study. The dimension of an input vector to Fuzzy ART neural networks can be reduced through RSAR. The updated vectors are used to train Fuzzy ART neural networks. An example is investigated to evaluate the proposed method in this study. Analysis results indicate that the proposed method can save great learning time without losing monitoring capability. Additionally, sensor abnormality and signal transmission issues may be detected as well.</description><identifier>ISBN: 0769534902</identifier><identifier>ISBN: 9780769534909</identifier><identifier>DOI: 10.1109/PACIIA.2008.337</identifier><identifier>LCCN: 2008908462</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer networks ; Computerized monitoring ; Condition monitoring ; Employee welfare ; Fuzzy logic ; Fuzzy neural networks ; Fuzzy set theory ; Neural networks ; Space technology ; Subspace constraints</subject><ispartof>2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, 2008, Vol.2, p.48-52</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4756732$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4756732$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jihai Gu</creatorcontrib><creatorcontrib>Xianfeng Fan</creatorcontrib><creatorcontrib>Ruoming An</creatorcontrib><creatorcontrib>Ye Tian</creatorcontrib><title>Condition Monitoring of Equipment Using a Joint RSAR and Fuzzy ART Neural Network Method</title><title>2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application</title><addtitle>PACIIA</addtitle><description>Working conditions are monitoring parameters are huge and neural network learning time too long in the condition monitoring of multi word condition equipment. To improve monitoring efficiency, a joint rough set attribute reduction (RSAR) and Fuzzy ART (adaptive resonance theory) neural network method is proposed in this study. The dimension of an input vector to Fuzzy ART neural networks can be reduced through RSAR. The updated vectors are used to train Fuzzy ART neural networks. An example is investigated to evaluate the proposed method in this study. Analysis results indicate that the proposed method can save great learning time without losing monitoring capability. Additionally, sensor abnormality and signal transmission issues may be detected as well.</description><subject>Computer networks</subject><subject>Computerized monitoring</subject><subject>Condition monitoring</subject><subject>Employee welfare</subject><subject>Fuzzy logic</subject><subject>Fuzzy neural networks</subject><subject>Fuzzy set theory</subject><subject>Neural networks</subject><subject>Space technology</subject><subject>Subspace constraints</subject><isbn>0769534902</isbn><isbn>9780769534909</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjE9PwjAchpsYEgU5e_DSLzD89c_a9bgsoDOgZmDijXRbp1Voceti4NPLoqcn75M8L0I3BGaEgLp7SbM8T2cUIJkxJi_QGKRQMeMK6AiNB68g4YJeomnXfQIAUUIS4FfoLfOutsF6h1fe2eBb696xb_D8u7eHvXEBv3aD0vjR2_Mq1mmBtavxoj-djjgtNvjJ9K3enRF-fPuFVyZ8-PoajRq968z0nxO0Xsw32UO0fL7Ps3QZWQUh4pqzuNJMa6CEC8YSI0uhiKbEiLIpY0GlUSUxSSJrKqiASkmqWCUJG9oJuv17tcaY7aG1e90et1zGQjLKfgGwo0-f</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Jihai Gu</creator><creator>Xianfeng Fan</creator><creator>Ruoming An</creator><creator>Ye Tian</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>Condition Monitoring of Equipment Using a Joint RSAR and Fuzzy ART Neural Network Method</title><author>Jihai Gu ; Xianfeng Fan ; Ruoming An ; Ye Tian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4a435ca3aa02146338e7b691a21e6bfb5627e9b1e887d26260c97293c7134a43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computer networks</topic><topic>Computerized monitoring</topic><topic>Condition monitoring</topic><topic>Employee welfare</topic><topic>Fuzzy logic</topic><topic>Fuzzy neural networks</topic><topic>Fuzzy set theory</topic><topic>Neural networks</topic><topic>Space technology</topic><topic>Subspace constraints</topic><toplevel>online_resources</toplevel><creatorcontrib>Jihai Gu</creatorcontrib><creatorcontrib>Xianfeng Fan</creatorcontrib><creatorcontrib>Ruoming An</creatorcontrib><creatorcontrib>Ye Tian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jihai Gu</au><au>Xianfeng Fan</au><au>Ruoming An</au><au>Ye Tian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Condition Monitoring of Equipment Using a Joint RSAR and Fuzzy ART Neural Network Method</atitle><btitle>2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application</btitle><stitle>PACIIA</stitle><date>2008-12</date><risdate>2008</risdate><volume>2</volume><spage>48</spage><epage>52</epage><pages>48-52</pages><isbn>0769534902</isbn><isbn>9780769534909</isbn><abstract>Working conditions are monitoring parameters are huge and neural network learning time too long in the condition monitoring of multi word condition equipment. To improve monitoring efficiency, a joint rough set attribute reduction (RSAR) and Fuzzy ART (adaptive resonance theory) neural network method is proposed in this study. The dimension of an input vector to Fuzzy ART neural networks can be reduced through RSAR. The updated vectors are used to train Fuzzy ART neural networks. An example is investigated to evaluate the proposed method in this study. Analysis results indicate that the proposed method can save great learning time without losing monitoring capability. Additionally, sensor abnormality and signal transmission issues may be detected as well.</abstract><pub>IEEE</pub><doi>10.1109/PACIIA.2008.337</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0769534902 |
ispartof | 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, 2008, Vol.2, p.48-52 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4756732 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer networks Computerized monitoring Condition monitoring Employee welfare Fuzzy logic Fuzzy neural networks Fuzzy set theory Neural networks Space technology Subspace constraints |
title | Condition Monitoring of Equipment Using a Joint RSAR and Fuzzy ART Neural Network Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A03%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Condition%20Monitoring%20of%20Equipment%20Using%20a%20Joint%20RSAR%20and%20Fuzzy%20ART%20Neural%20Network%20Method&rft.btitle=2008%20IEEE%20Pacific-Asia%20Workshop%20on%20Computational%20Intelligence%20and%20Industrial%20Application&rft.au=Jihai%20Gu&rft.date=2008-12&rft.volume=2&rft.spage=48&rft.epage=52&rft.pages=48-52&rft.isbn=0769534902&rft.isbn_list=9780769534909&rft_id=info:doi/10.1109/PACIIA.2008.337&rft_dat=%3Cieee_6IE%3E4756732%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4756732&rfr_iscdi=true |