Condition Monitoring of Equipment Using a Joint RSAR and Fuzzy ART Neural Network Method

Working conditions are monitoring parameters are huge and neural network learning time too long in the condition monitoring of multi word condition equipment. To improve monitoring efficiency, a joint rough set attribute reduction (RSAR) and Fuzzy ART (adaptive resonance theory) neural network metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jihai Gu, Xianfeng Fan, Ruoming An, Ye Tian
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 52
container_issue
container_start_page 48
container_title
container_volume 2
creator Jihai Gu
Xianfeng Fan
Ruoming An
Ye Tian
description Working conditions are monitoring parameters are huge and neural network learning time too long in the condition monitoring of multi word condition equipment. To improve monitoring efficiency, a joint rough set attribute reduction (RSAR) and Fuzzy ART (adaptive resonance theory) neural network method is proposed in this study. The dimension of an input vector to Fuzzy ART neural networks can be reduced through RSAR. The updated vectors are used to train Fuzzy ART neural networks. An example is investigated to evaluate the proposed method in this study. Analysis results indicate that the proposed method can save great learning time without losing monitoring capability. Additionally, sensor abnormality and signal transmission issues may be detected as well.
doi_str_mv 10.1109/PACIIA.2008.337
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4756732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4756732</ieee_id><sourcerecordid>4756732</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4a435ca3aa02146338e7b691a21e6bfb5627e9b1e887d26260c97293c7134a43</originalsourceid><addsrcrecordid>eNotjE9PwjAchpsYEgU5e_DSLzD89c_a9bgsoDOgZmDijXRbp1Voceti4NPLoqcn75M8L0I3BGaEgLp7SbM8T2cUIJkxJi_QGKRQMeMK6AiNB68g4YJeomnXfQIAUUIS4FfoLfOutsF6h1fe2eBb696xb_D8u7eHvXEBv3aD0vjR2_Mq1mmBtavxoj-djjgtNvjJ9K3enRF-fPuFVyZ8-PoajRq968z0nxO0Xsw32UO0fL7Ps3QZWQUh4pqzuNJMa6CEC8YSI0uhiKbEiLIpY0GlUSUxSSJrKqiASkmqWCUJG9oJuv17tcaY7aG1e90et1zGQjLKfgGwo0-f</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Condition Monitoring of Equipment Using a Joint RSAR and Fuzzy ART Neural Network Method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jihai Gu ; Xianfeng Fan ; Ruoming An ; Ye Tian</creator><creatorcontrib>Jihai Gu ; Xianfeng Fan ; Ruoming An ; Ye Tian</creatorcontrib><description>Working conditions are monitoring parameters are huge and neural network learning time too long in the condition monitoring of multi word condition equipment. To improve monitoring efficiency, a joint rough set attribute reduction (RSAR) and Fuzzy ART (adaptive resonance theory) neural network method is proposed in this study. The dimension of an input vector to Fuzzy ART neural networks can be reduced through RSAR. The updated vectors are used to train Fuzzy ART neural networks. An example is investigated to evaluate the proposed method in this study. Analysis results indicate that the proposed method can save great learning time without losing monitoring capability. Additionally, sensor abnormality and signal transmission issues may be detected as well.</description><identifier>ISBN: 0769534902</identifier><identifier>ISBN: 9780769534909</identifier><identifier>DOI: 10.1109/PACIIA.2008.337</identifier><identifier>LCCN: 2008908462</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer networks ; Computerized monitoring ; Condition monitoring ; Employee welfare ; Fuzzy logic ; Fuzzy neural networks ; Fuzzy set theory ; Neural networks ; Space technology ; Subspace constraints</subject><ispartof>2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, 2008, Vol.2, p.48-52</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4756732$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4756732$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jihai Gu</creatorcontrib><creatorcontrib>Xianfeng Fan</creatorcontrib><creatorcontrib>Ruoming An</creatorcontrib><creatorcontrib>Ye Tian</creatorcontrib><title>Condition Monitoring of Equipment Using a Joint RSAR and Fuzzy ART Neural Network Method</title><title>2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application</title><addtitle>PACIIA</addtitle><description>Working conditions are monitoring parameters are huge and neural network learning time too long in the condition monitoring of multi word condition equipment. To improve monitoring efficiency, a joint rough set attribute reduction (RSAR) and Fuzzy ART (adaptive resonance theory) neural network method is proposed in this study. The dimension of an input vector to Fuzzy ART neural networks can be reduced through RSAR. The updated vectors are used to train Fuzzy ART neural networks. An example is investigated to evaluate the proposed method in this study. Analysis results indicate that the proposed method can save great learning time without losing monitoring capability. Additionally, sensor abnormality and signal transmission issues may be detected as well.</description><subject>Computer networks</subject><subject>Computerized monitoring</subject><subject>Condition monitoring</subject><subject>Employee welfare</subject><subject>Fuzzy logic</subject><subject>Fuzzy neural networks</subject><subject>Fuzzy set theory</subject><subject>Neural networks</subject><subject>Space technology</subject><subject>Subspace constraints</subject><isbn>0769534902</isbn><isbn>9780769534909</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjE9PwjAchpsYEgU5e_DSLzD89c_a9bgsoDOgZmDijXRbp1Voceti4NPLoqcn75M8L0I3BGaEgLp7SbM8T2cUIJkxJi_QGKRQMeMK6AiNB68g4YJeomnXfQIAUUIS4FfoLfOutsF6h1fe2eBb696xb_D8u7eHvXEBv3aD0vjR2_Mq1mmBtavxoj-djjgtNvjJ9K3enRF-fPuFVyZ8-PoajRq968z0nxO0Xsw32UO0fL7Ps3QZWQUh4pqzuNJMa6CEC8YSI0uhiKbEiLIpY0GlUSUxSSJrKqiASkmqWCUJG9oJuv17tcaY7aG1e90et1zGQjLKfgGwo0-f</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Jihai Gu</creator><creator>Xianfeng Fan</creator><creator>Ruoming An</creator><creator>Ye Tian</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>Condition Monitoring of Equipment Using a Joint RSAR and Fuzzy ART Neural Network Method</title><author>Jihai Gu ; Xianfeng Fan ; Ruoming An ; Ye Tian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4a435ca3aa02146338e7b691a21e6bfb5627e9b1e887d26260c97293c7134a43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computer networks</topic><topic>Computerized monitoring</topic><topic>Condition monitoring</topic><topic>Employee welfare</topic><topic>Fuzzy logic</topic><topic>Fuzzy neural networks</topic><topic>Fuzzy set theory</topic><topic>Neural networks</topic><topic>Space technology</topic><topic>Subspace constraints</topic><toplevel>online_resources</toplevel><creatorcontrib>Jihai Gu</creatorcontrib><creatorcontrib>Xianfeng Fan</creatorcontrib><creatorcontrib>Ruoming An</creatorcontrib><creatorcontrib>Ye Tian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jihai Gu</au><au>Xianfeng Fan</au><au>Ruoming An</au><au>Ye Tian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Condition Monitoring of Equipment Using a Joint RSAR and Fuzzy ART Neural Network Method</atitle><btitle>2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application</btitle><stitle>PACIIA</stitle><date>2008-12</date><risdate>2008</risdate><volume>2</volume><spage>48</spage><epage>52</epage><pages>48-52</pages><isbn>0769534902</isbn><isbn>9780769534909</isbn><abstract>Working conditions are monitoring parameters are huge and neural network learning time too long in the condition monitoring of multi word condition equipment. To improve monitoring efficiency, a joint rough set attribute reduction (RSAR) and Fuzzy ART (adaptive resonance theory) neural network method is proposed in this study. The dimension of an input vector to Fuzzy ART neural networks can be reduced through RSAR. The updated vectors are used to train Fuzzy ART neural networks. An example is investigated to evaluate the proposed method in this study. Analysis results indicate that the proposed method can save great learning time without losing monitoring capability. Additionally, sensor abnormality and signal transmission issues may be detected as well.</abstract><pub>IEEE</pub><doi>10.1109/PACIIA.2008.337</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769534902
ispartof 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, 2008, Vol.2, p.48-52
issn
language eng
recordid cdi_ieee_primary_4756732
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer networks
Computerized monitoring
Condition monitoring
Employee welfare
Fuzzy logic
Fuzzy neural networks
Fuzzy set theory
Neural networks
Space technology
Subspace constraints
title Condition Monitoring of Equipment Using a Joint RSAR and Fuzzy ART Neural Network Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A03%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Condition%20Monitoring%20of%20Equipment%20Using%20a%20Joint%20RSAR%20and%20Fuzzy%20ART%20Neural%20Network%20Method&rft.btitle=2008%20IEEE%20Pacific-Asia%20Workshop%20on%20Computational%20Intelligence%20and%20Industrial%20Application&rft.au=Jihai%20Gu&rft.date=2008-12&rft.volume=2&rft.spage=48&rft.epage=52&rft.pages=48-52&rft.isbn=0769534902&rft.isbn_list=9780769534909&rft_id=info:doi/10.1109/PACIIA.2008.337&rft_dat=%3Cieee_6IE%3E4756732%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4756732&rfr_iscdi=true