5kV/200ns Pulsed Power Switch based on a SiC-JFET Super Cascode

In many pulse power applications there is a trend to modulators based on semiconductor technology. For these modulators high voltage and high current semiconductor switches are required in order to achieve a high pulsed power. Therefore, often high power IGBT modules or IGCT devices are used. Since...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Biela, J., Aggeler, D., Bortis, D., Kolar, J.W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 361
container_issue
container_start_page 358
container_title
container_volume
creator Biela, J.
Aggeler, D.
Bortis, D.
Kolar, J.W.
description In many pulse power applications there is a trend to modulators based on semiconductor technology. For these modulators high voltage and high current semiconductor switches are required in order to achieve a high pulsed power. Therefore, often high power IGBT modules or IGCT devices are used. Since these devices are based on bipolar technology the switching speed is limited and the switching losses are higher. In contrast to bipolar devices unipolar ones (e.g. SiC JFETs) basically offer a better switching performance. Moreover, these devices enable high blocking voltages in case large bandgap materials as SiC are used. At the moment SiC JFET devices with a blocking voltage of 1.5 kV per JFET are available. Alternatively, the operating voltage could be increased by connecting N JFETs and a low voltage MOSFET in series resulting in a Super Cascode switch with a blocking voltage N-times higher than the blocking voltage of a single JFET. In order to evaluate the achievable switching speed of the Super Cascode and its applicability in solid state modulators, the performance of such a SiC switch is examined in this paper. Furthermore, the performance of the Super Cascode is compared with 4.5 kV IGBTs made by Powerex, which are mounted in a special low inductive housing for minimising the rise and fall times.
doi_str_mv 10.1109/IPMC.2008.4743658
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4743658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4743658</ieee_id><sourcerecordid>4743658</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b807b48e059e2ab880c3cb6d6ab64c823020b0f9a51de8ad68fa6aaddc717c003</originalsourceid><addsrcrecordid>eNo1UMlKw1AUfU5grPkAcfN-IOl9881KJFStVAxExV15UzAOTUlain9vxHo2B860OIRcMMgZg2I6rx7KnANgLo0UWuEBOWOSS8mUUOaQJFwZnRmO4oikhcF_T_JjkrBCQIaoXk9JOgzvMEKBATAJuVIfL9NxdzXQavs5xECrbhd7Wu_ajX-jzv5K3YpaWrdldn8ze6L1dj0GSjv4LsRzctLYsZfueUKex0x5ly0eb-fl9SJrmVGbzCEYJzGCKiK3DhG88E4HbZ2WHrkADg6awioWItqgsbHa2hC8YcYDiAm5_NttY4zLdd9-2f57uf9C_AAUrUvG</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>5kV/200ns Pulsed Power Switch based on a SiC-JFET Super Cascode</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Biela, J. ; Aggeler, D. ; Bortis, D. ; Kolar, J.W.</creator><creatorcontrib>Biela, J. ; Aggeler, D. ; Bortis, D. ; Kolar, J.W.</creatorcontrib><description>In many pulse power applications there is a trend to modulators based on semiconductor technology. For these modulators high voltage and high current semiconductor switches are required in order to achieve a high pulsed power. Therefore, often high power IGBT modules or IGCT devices are used. Since these devices are based on bipolar technology the switching speed is limited and the switching losses are higher. In contrast to bipolar devices unipolar ones (e.g. SiC JFETs) basically offer a better switching performance. Moreover, these devices enable high blocking voltages in case large bandgap materials as SiC are used. At the moment SiC JFET devices with a blocking voltage of 1.5 kV per JFET are available. Alternatively, the operating voltage could be increased by connecting N JFETs and a low voltage MOSFET in series resulting in a Super Cascode switch with a blocking voltage N-times higher than the blocking voltage of a single JFET. In order to evaluate the achievable switching speed of the Super Cascode and its applicability in solid state modulators, the performance of such a SiC switch is examined in this paper. Furthermore, the performance of the Super Cascode is compared with 4.5 kV IGBTs made by Powerex, which are mounted in a special low inductive housing for minimising the rise and fall times.</description><identifier>ISSN: 1930-885X</identifier><identifier>ISBN: 9781424415342</identifier><identifier>ISBN: 1424415349</identifier><identifier>EISSN: 2576-7283</identifier><identifier>EISBN: 1424415357</identifier><identifier>EISBN: 9781424415359</identifier><identifier>DOI: 10.1109/IPMC.2008.4743658</identifier><language>eng</language><publisher>IEEE</publisher><subject>Insulated gate bipolar transistors ; JFETs ; Joining processes ; Low voltage ; MOSFET circuits ; Photonic band gap ; Power semiconductor switches ; Pulse modulation ; Silicon carbide ; Switching loss</subject><ispartof>2008 IEEE International Power Modulators and High-Voltage Conference, 2008, p.358-361</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4743658$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4743658$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Biela, J.</creatorcontrib><creatorcontrib>Aggeler, D.</creatorcontrib><creatorcontrib>Bortis, D.</creatorcontrib><creatorcontrib>Kolar, J.W.</creatorcontrib><title>5kV/200ns Pulsed Power Switch based on a SiC-JFET Super Cascode</title><title>2008 IEEE International Power Modulators and High-Voltage Conference</title><addtitle>IPMC</addtitle><description>In many pulse power applications there is a trend to modulators based on semiconductor technology. For these modulators high voltage and high current semiconductor switches are required in order to achieve a high pulsed power. Therefore, often high power IGBT modules or IGCT devices are used. Since these devices are based on bipolar technology the switching speed is limited and the switching losses are higher. In contrast to bipolar devices unipolar ones (e.g. SiC JFETs) basically offer a better switching performance. Moreover, these devices enable high blocking voltages in case large bandgap materials as SiC are used. At the moment SiC JFET devices with a blocking voltage of 1.5 kV per JFET are available. Alternatively, the operating voltage could be increased by connecting N JFETs and a low voltage MOSFET in series resulting in a Super Cascode switch with a blocking voltage N-times higher than the blocking voltage of a single JFET. In order to evaluate the achievable switching speed of the Super Cascode and its applicability in solid state modulators, the performance of such a SiC switch is examined in this paper. Furthermore, the performance of the Super Cascode is compared with 4.5 kV IGBTs made by Powerex, which are mounted in a special low inductive housing for minimising the rise and fall times.</description><subject>Insulated gate bipolar transistors</subject><subject>JFETs</subject><subject>Joining processes</subject><subject>Low voltage</subject><subject>MOSFET circuits</subject><subject>Photonic band gap</subject><subject>Power semiconductor switches</subject><subject>Pulse modulation</subject><subject>Silicon carbide</subject><subject>Switching loss</subject><issn>1930-885X</issn><issn>2576-7283</issn><isbn>9781424415342</isbn><isbn>1424415349</isbn><isbn>1424415357</isbn><isbn>9781424415359</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UMlKw1AUfU5grPkAcfN-IOl9881KJFStVAxExV15UzAOTUlain9vxHo2B860OIRcMMgZg2I6rx7KnANgLo0UWuEBOWOSS8mUUOaQJFwZnRmO4oikhcF_T_JjkrBCQIaoXk9JOgzvMEKBATAJuVIfL9NxdzXQavs5xECrbhd7Wu_ajX-jzv5K3YpaWrdldn8ze6L1dj0GSjv4LsRzctLYsZfueUKex0x5ly0eb-fl9SJrmVGbzCEYJzGCKiK3DhG88E4HbZ2WHrkADg6awioWItqgsbHa2hC8YcYDiAm5_NttY4zLdd9-2f57uf9C_AAUrUvG</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Biela, J.</creator><creator>Aggeler, D.</creator><creator>Bortis, D.</creator><creator>Kolar, J.W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200805</creationdate><title>5kV/200ns Pulsed Power Switch based on a SiC-JFET Super Cascode</title><author>Biela, J. ; Aggeler, D. ; Bortis, D. ; Kolar, J.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b807b48e059e2ab880c3cb6d6ab64c823020b0f9a51de8ad68fa6aaddc717c003</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Insulated gate bipolar transistors</topic><topic>JFETs</topic><topic>Joining processes</topic><topic>Low voltage</topic><topic>MOSFET circuits</topic><topic>Photonic band gap</topic><topic>Power semiconductor switches</topic><topic>Pulse modulation</topic><topic>Silicon carbide</topic><topic>Switching loss</topic><toplevel>online_resources</toplevel><creatorcontrib>Biela, J.</creatorcontrib><creatorcontrib>Aggeler, D.</creatorcontrib><creatorcontrib>Bortis, D.</creatorcontrib><creatorcontrib>Kolar, J.W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Biela, J.</au><au>Aggeler, D.</au><au>Bortis, D.</au><au>Kolar, J.W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>5kV/200ns Pulsed Power Switch based on a SiC-JFET Super Cascode</atitle><btitle>2008 IEEE International Power Modulators and High-Voltage Conference</btitle><stitle>IPMC</stitle><date>2008-05</date><risdate>2008</risdate><spage>358</spage><epage>361</epage><pages>358-361</pages><issn>1930-885X</issn><eissn>2576-7283</eissn><isbn>9781424415342</isbn><isbn>1424415349</isbn><eisbn>1424415357</eisbn><eisbn>9781424415359</eisbn><abstract>In many pulse power applications there is a trend to modulators based on semiconductor technology. For these modulators high voltage and high current semiconductor switches are required in order to achieve a high pulsed power. Therefore, often high power IGBT modules or IGCT devices are used. Since these devices are based on bipolar technology the switching speed is limited and the switching losses are higher. In contrast to bipolar devices unipolar ones (e.g. SiC JFETs) basically offer a better switching performance. Moreover, these devices enable high blocking voltages in case large bandgap materials as SiC are used. At the moment SiC JFET devices with a blocking voltage of 1.5 kV per JFET are available. Alternatively, the operating voltage could be increased by connecting N JFETs and a low voltage MOSFET in series resulting in a Super Cascode switch with a blocking voltage N-times higher than the blocking voltage of a single JFET. In order to evaluate the achievable switching speed of the Super Cascode and its applicability in solid state modulators, the performance of such a SiC switch is examined in this paper. Furthermore, the performance of the Super Cascode is compared with 4.5 kV IGBTs made by Powerex, which are mounted in a special low inductive housing for minimising the rise and fall times.</abstract><pub>IEEE</pub><doi>10.1109/IPMC.2008.4743658</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1930-885X
ispartof 2008 IEEE International Power Modulators and High-Voltage Conference, 2008, p.358-361
issn 1930-885X
2576-7283
language eng
recordid cdi_ieee_primary_4743658
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Insulated gate bipolar transistors
JFETs
Joining processes
Low voltage
MOSFET circuits
Photonic band gap
Power semiconductor switches
Pulse modulation
Silicon carbide
Switching loss
title 5kV/200ns Pulsed Power Switch based on a SiC-JFET Super Cascode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A43%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=5kV/200ns%20Pulsed%20Power%20Switch%20based%20on%20a%20SiC-JFET%20Super%20Cascode&rft.btitle=2008%20IEEE%20International%20Power%20Modulators%20and%20High-Voltage%20Conference&rft.au=Biela,%20J.&rft.date=2008-05&rft.spage=358&rft.epage=361&rft.pages=358-361&rft.issn=1930-885X&rft.eissn=2576-7283&rft.isbn=9781424415342&rft.isbn_list=1424415349&rft_id=info:doi/10.1109/IPMC.2008.4743658&rft_dat=%3Cieee_6IE%3E4743658%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424415357&rft.eisbn_list=9781424415359&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4743658&rfr_iscdi=true