A Novel Semi-Supervised SVM Based on Tri-Training
One of the main difficulties in machine learning is how to solve large-scale problems effectively, and the labeled data are limited and fairly expensive to obtain. In this paper a new semi-supervised SVM algorithm is proposed. It applies tri-training to improve SVM. The semi-supervised SVM makes use...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 51 |
---|---|
container_issue | |
container_start_page | 47 |
container_title | |
container_volume | 3 |
creator | KunLun Li Wei Zhang Xiaotao Ma Zheng Cao Chao Zhang |
description | One of the main difficulties in machine learning is how to solve large-scale problems effectively, and the labeled data are limited and fairly expensive to obtain. In this paper a new semi-supervised SVM algorithm is proposed. It applies tri-training to improve SVM. The semi-supervised SVM makes use of the large number of unlabeled data to modify the classifiers iteratively. Although tri-training doesn't put any constraints on the classifier, the proposed method uses three different SVMs as the classification algorithm. Experiments on UCI datasets show that tri-training can improve the classification accuracy of SVM and can increase the difference of classifiers, the accuracy of final classifier will be higher. Theoretical analysis and experiments show that the proposed method has excellent accuracy and classification speed. |
doi_str_mv | 10.1109/IITA.2008.261 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4739956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4739956</ieee_id><sourcerecordid>4739956</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a781d15cc197f2f9d8d69b08a566af9a39a36fadf521d5dfc6492657c5f0cf883</originalsourceid><addsrcrecordid>eNotjM1Kw0AURgekoNYsXbmZF0i8N8mdmbuMRW2g6iLRbRnnR0batCRa8O1tUTjwHfjgCHGNUCAC37Zt3xQlgClKhWciY21AK6aqPtpMXJ4uBkNI5yKbpk8AQFYaiS4ENvJ5dwgb2YVtyrvvfRgPaQpedm9P8s6ebDfIfkx5P9o0pOHjSsyi3Uwh-9-5eH247xfLfPXy2C6aVZ5Q01dutUGP5ByyjmVkb7zidzCWlLKRbXVEResjlejJR6dqLhVpRxFcNKaai5u_bgohrPdj2trxZ13riplU9QtIWUNA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Novel Semi-Supervised SVM Based on Tri-Training</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>KunLun Li ; Wei Zhang ; Xiaotao Ma ; Zheng Cao ; Chao Zhang</creator><creatorcontrib>KunLun Li ; Wei Zhang ; Xiaotao Ma ; Zheng Cao ; Chao Zhang</creatorcontrib><description>One of the main difficulties in machine learning is how to solve large-scale problems effectively, and the labeled data are limited and fairly expensive to obtain. In this paper a new semi-supervised SVM algorithm is proposed. It applies tri-training to improve SVM. The semi-supervised SVM makes use of the large number of unlabeled data to modify the classifiers iteratively. Although tri-training doesn't put any constraints on the classifier, the proposed method uses three different SVMs as the classification algorithm. Experiments on UCI datasets show that tri-training can improve the classification accuracy of SVM and can increase the difference of classifiers, the accuracy of final classifier will be higher. Theoretical analysis and experiments show that the proposed method has excellent accuracy and classification speed.</description><identifier>ISBN: 9780769534978</identifier><identifier>ISBN: 076953497X</identifier><identifier>DOI: 10.1109/IITA.2008.261</identifier><identifier>LCCN: 2008908515</identifier><language>eng</language><publisher>IEEE</publisher><subject>co-training ; Information technology ; Iterative algorithms ; least square support vector machine ; Machine learning ; Machine learning algorithms ; Postal services ; proximal support vector machine ; semi-supervised learning ; Semisupervised learning ; Supervised learning ; support vector machine ; Support vector machine classification ; Support vector machines ; tri-training ; Unsupervised learning</subject><ispartof>2008 Second International Symposium on Intelligent Information Technology Application, 2008, Vol.3, p.47-51</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4739956$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4739956$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>KunLun Li</creatorcontrib><creatorcontrib>Wei Zhang</creatorcontrib><creatorcontrib>Xiaotao Ma</creatorcontrib><creatorcontrib>Zheng Cao</creatorcontrib><creatorcontrib>Chao Zhang</creatorcontrib><title>A Novel Semi-Supervised SVM Based on Tri-Training</title><title>2008 Second International Symposium on Intelligent Information Technology Application</title><addtitle>IITA</addtitle><description>One of the main difficulties in machine learning is how to solve large-scale problems effectively, and the labeled data are limited and fairly expensive to obtain. In this paper a new semi-supervised SVM algorithm is proposed. It applies tri-training to improve SVM. The semi-supervised SVM makes use of the large number of unlabeled data to modify the classifiers iteratively. Although tri-training doesn't put any constraints on the classifier, the proposed method uses three different SVMs as the classification algorithm. Experiments on UCI datasets show that tri-training can improve the classification accuracy of SVM and can increase the difference of classifiers, the accuracy of final classifier will be higher. Theoretical analysis and experiments show that the proposed method has excellent accuracy and classification speed.</description><subject>co-training</subject><subject>Information technology</subject><subject>Iterative algorithms</subject><subject>least square support vector machine</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Postal services</subject><subject>proximal support vector machine</subject><subject>semi-supervised learning</subject><subject>Semisupervised learning</subject><subject>Supervised learning</subject><subject>support vector machine</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>tri-training</subject><subject>Unsupervised learning</subject><isbn>9780769534978</isbn><isbn>076953497X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjM1Kw0AURgekoNYsXbmZF0i8N8mdmbuMRW2g6iLRbRnnR0batCRa8O1tUTjwHfjgCHGNUCAC37Zt3xQlgClKhWciY21AK6aqPtpMXJ4uBkNI5yKbpk8AQFYaiS4ENvJ5dwgb2YVtyrvvfRgPaQpedm9P8s6ebDfIfkx5P9o0pOHjSsyi3Uwh-9-5eH247xfLfPXy2C6aVZ5Q01dutUGP5ByyjmVkb7zidzCWlLKRbXVEResjlejJR6dqLhVpRxFcNKaai5u_bgohrPdj2trxZ13riplU9QtIWUNA</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>KunLun Li</creator><creator>Wei Zhang</creator><creator>Xiaotao Ma</creator><creator>Zheng Cao</creator><creator>Chao Zhang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>A Novel Semi-Supervised SVM Based on Tri-Training</title><author>KunLun Li ; Wei Zhang ; Xiaotao Ma ; Zheng Cao ; Chao Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a781d15cc197f2f9d8d69b08a566af9a39a36fadf521d5dfc6492657c5f0cf883</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>co-training</topic><topic>Information technology</topic><topic>Iterative algorithms</topic><topic>least square support vector machine</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Postal services</topic><topic>proximal support vector machine</topic><topic>semi-supervised learning</topic><topic>Semisupervised learning</topic><topic>Supervised learning</topic><topic>support vector machine</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>tri-training</topic><topic>Unsupervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>KunLun Li</creatorcontrib><creatorcontrib>Wei Zhang</creatorcontrib><creatorcontrib>Xiaotao Ma</creatorcontrib><creatorcontrib>Zheng Cao</creatorcontrib><creatorcontrib>Chao Zhang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KunLun Li</au><au>Wei Zhang</au><au>Xiaotao Ma</au><au>Zheng Cao</au><au>Chao Zhang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Novel Semi-Supervised SVM Based on Tri-Training</atitle><btitle>2008 Second International Symposium on Intelligent Information Technology Application</btitle><stitle>IITA</stitle><date>2008-12</date><risdate>2008</risdate><volume>3</volume><spage>47</spage><epage>51</epage><pages>47-51</pages><isbn>9780769534978</isbn><isbn>076953497X</isbn><abstract>One of the main difficulties in machine learning is how to solve large-scale problems effectively, and the labeled data are limited and fairly expensive to obtain. In this paper a new semi-supervised SVM algorithm is proposed. It applies tri-training to improve SVM. The semi-supervised SVM makes use of the large number of unlabeled data to modify the classifiers iteratively. Although tri-training doesn't put any constraints on the classifier, the proposed method uses three different SVMs as the classification algorithm. Experiments on UCI datasets show that tri-training can improve the classification accuracy of SVM and can increase the difference of classifiers, the accuracy of final classifier will be higher. Theoretical analysis and experiments show that the proposed method has excellent accuracy and classification speed.</abstract><pub>IEEE</pub><doi>10.1109/IITA.2008.261</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769534978 |
ispartof | 2008 Second International Symposium on Intelligent Information Technology Application, 2008, Vol.3, p.47-51 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4739956 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | co-training Information technology Iterative algorithms least square support vector machine Machine learning Machine learning algorithms Postal services proximal support vector machine semi-supervised learning Semisupervised learning Supervised learning support vector machine Support vector machine classification Support vector machines tri-training Unsupervised learning |
title | A Novel Semi-Supervised SVM Based on Tri-Training |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A30%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Novel%20Semi-Supervised%20SVM%20Based%20on%20Tri-Training&rft.btitle=2008%20Second%20International%20Symposium%20on%20Intelligent%20Information%20Technology%20Application&rft.au=KunLun%20Li&rft.date=2008-12&rft.volume=3&rft.spage=47&rft.epage=51&rft.pages=47-51&rft.isbn=9780769534978&rft.isbn_list=076953497X&rft_id=info:doi/10.1109/IITA.2008.261&rft_dat=%3Cieee_6IE%3E4739956%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4739956&rfr_iscdi=true |