A Novel Semi-Supervised SVM Based on Tri-Training

One of the main difficulties in machine learning is how to solve large-scale problems effectively, and the labeled data are limited and fairly expensive to obtain. In this paper a new semi-supervised SVM algorithm is proposed. It applies tri-training to improve SVM. The semi-supervised SVM makes use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: KunLun Li, Wei Zhang, Xiaotao Ma, Zheng Cao, Chao Zhang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue
container_start_page 47
container_title
container_volume 3
creator KunLun Li
Wei Zhang
Xiaotao Ma
Zheng Cao
Chao Zhang
description One of the main difficulties in machine learning is how to solve large-scale problems effectively, and the labeled data are limited and fairly expensive to obtain. In this paper a new semi-supervised SVM algorithm is proposed. It applies tri-training to improve SVM. The semi-supervised SVM makes use of the large number of unlabeled data to modify the classifiers iteratively. Although tri-training doesn't put any constraints on the classifier, the proposed method uses three different SVMs as the classification algorithm. Experiments on UCI datasets show that tri-training can improve the classification accuracy of SVM and can increase the difference of classifiers, the accuracy of final classifier will be higher. Theoretical analysis and experiments show that the proposed method has excellent accuracy and classification speed.
doi_str_mv 10.1109/IITA.2008.261
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4739956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4739956</ieee_id><sourcerecordid>4739956</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a781d15cc197f2f9d8d69b08a566af9a39a36fadf521d5dfc6492657c5f0cf883</originalsourceid><addsrcrecordid>eNotjM1Kw0AURgekoNYsXbmZF0i8N8mdmbuMRW2g6iLRbRnnR0batCRa8O1tUTjwHfjgCHGNUCAC37Zt3xQlgClKhWciY21AK6aqPtpMXJ4uBkNI5yKbpk8AQFYaiS4ENvJ5dwgb2YVtyrvvfRgPaQpedm9P8s6ebDfIfkx5P9o0pOHjSsyi3Uwh-9-5eH247xfLfPXy2C6aVZ5Q01dutUGP5ByyjmVkb7zidzCWlLKRbXVEResjlejJR6dqLhVpRxFcNKaai5u_bgohrPdj2trxZ13riplU9QtIWUNA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Novel Semi-Supervised SVM Based on Tri-Training</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>KunLun Li ; Wei Zhang ; Xiaotao Ma ; Zheng Cao ; Chao Zhang</creator><creatorcontrib>KunLun Li ; Wei Zhang ; Xiaotao Ma ; Zheng Cao ; Chao Zhang</creatorcontrib><description>One of the main difficulties in machine learning is how to solve large-scale problems effectively, and the labeled data are limited and fairly expensive to obtain. In this paper a new semi-supervised SVM algorithm is proposed. It applies tri-training to improve SVM. The semi-supervised SVM makes use of the large number of unlabeled data to modify the classifiers iteratively. Although tri-training doesn't put any constraints on the classifier, the proposed method uses three different SVMs as the classification algorithm. Experiments on UCI datasets show that tri-training can improve the classification accuracy of SVM and can increase the difference of classifiers, the accuracy of final classifier will be higher. Theoretical analysis and experiments show that the proposed method has excellent accuracy and classification speed.</description><identifier>ISBN: 9780769534978</identifier><identifier>ISBN: 076953497X</identifier><identifier>DOI: 10.1109/IITA.2008.261</identifier><identifier>LCCN: 2008908515</identifier><language>eng</language><publisher>IEEE</publisher><subject>co-training ; Information technology ; Iterative algorithms ; least square support vector machine ; Machine learning ; Machine learning algorithms ; Postal services ; proximal support vector machine ; semi-supervised learning ; Semisupervised learning ; Supervised learning ; support vector machine ; Support vector machine classification ; Support vector machines ; tri-training ; Unsupervised learning</subject><ispartof>2008 Second International Symposium on Intelligent Information Technology Application, 2008, Vol.3, p.47-51</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4739956$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4739956$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>KunLun Li</creatorcontrib><creatorcontrib>Wei Zhang</creatorcontrib><creatorcontrib>Xiaotao Ma</creatorcontrib><creatorcontrib>Zheng Cao</creatorcontrib><creatorcontrib>Chao Zhang</creatorcontrib><title>A Novel Semi-Supervised SVM Based on Tri-Training</title><title>2008 Second International Symposium on Intelligent Information Technology Application</title><addtitle>IITA</addtitle><description>One of the main difficulties in machine learning is how to solve large-scale problems effectively, and the labeled data are limited and fairly expensive to obtain. In this paper a new semi-supervised SVM algorithm is proposed. It applies tri-training to improve SVM. The semi-supervised SVM makes use of the large number of unlabeled data to modify the classifiers iteratively. Although tri-training doesn't put any constraints on the classifier, the proposed method uses three different SVMs as the classification algorithm. Experiments on UCI datasets show that tri-training can improve the classification accuracy of SVM and can increase the difference of classifiers, the accuracy of final classifier will be higher. Theoretical analysis and experiments show that the proposed method has excellent accuracy and classification speed.</description><subject>co-training</subject><subject>Information technology</subject><subject>Iterative algorithms</subject><subject>least square support vector machine</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Postal services</subject><subject>proximal support vector machine</subject><subject>semi-supervised learning</subject><subject>Semisupervised learning</subject><subject>Supervised learning</subject><subject>support vector machine</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>tri-training</subject><subject>Unsupervised learning</subject><isbn>9780769534978</isbn><isbn>076953497X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjM1Kw0AURgekoNYsXbmZF0i8N8mdmbuMRW2g6iLRbRnnR0batCRa8O1tUTjwHfjgCHGNUCAC37Zt3xQlgClKhWciY21AK6aqPtpMXJ4uBkNI5yKbpk8AQFYaiS4ENvJ5dwgb2YVtyrvvfRgPaQpedm9P8s6ebDfIfkx5P9o0pOHjSsyi3Uwh-9-5eH247xfLfPXy2C6aVZ5Q01dutUGP5ByyjmVkb7zidzCWlLKRbXVEResjlejJR6dqLhVpRxFcNKaai5u_bgohrPdj2trxZ13riplU9QtIWUNA</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>KunLun Li</creator><creator>Wei Zhang</creator><creator>Xiaotao Ma</creator><creator>Zheng Cao</creator><creator>Chao Zhang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>A Novel Semi-Supervised SVM Based on Tri-Training</title><author>KunLun Li ; Wei Zhang ; Xiaotao Ma ; Zheng Cao ; Chao Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a781d15cc197f2f9d8d69b08a566af9a39a36fadf521d5dfc6492657c5f0cf883</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>co-training</topic><topic>Information technology</topic><topic>Iterative algorithms</topic><topic>least square support vector machine</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Postal services</topic><topic>proximal support vector machine</topic><topic>semi-supervised learning</topic><topic>Semisupervised learning</topic><topic>Supervised learning</topic><topic>support vector machine</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>tri-training</topic><topic>Unsupervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>KunLun Li</creatorcontrib><creatorcontrib>Wei Zhang</creatorcontrib><creatorcontrib>Xiaotao Ma</creatorcontrib><creatorcontrib>Zheng Cao</creatorcontrib><creatorcontrib>Chao Zhang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KunLun Li</au><au>Wei Zhang</au><au>Xiaotao Ma</au><au>Zheng Cao</au><au>Chao Zhang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Novel Semi-Supervised SVM Based on Tri-Training</atitle><btitle>2008 Second International Symposium on Intelligent Information Technology Application</btitle><stitle>IITA</stitle><date>2008-12</date><risdate>2008</risdate><volume>3</volume><spage>47</spage><epage>51</epage><pages>47-51</pages><isbn>9780769534978</isbn><isbn>076953497X</isbn><abstract>One of the main difficulties in machine learning is how to solve large-scale problems effectively, and the labeled data are limited and fairly expensive to obtain. In this paper a new semi-supervised SVM algorithm is proposed. It applies tri-training to improve SVM. The semi-supervised SVM makes use of the large number of unlabeled data to modify the classifiers iteratively. Although tri-training doesn't put any constraints on the classifier, the proposed method uses three different SVMs as the classification algorithm. Experiments on UCI datasets show that tri-training can improve the classification accuracy of SVM and can increase the difference of classifiers, the accuracy of final classifier will be higher. Theoretical analysis and experiments show that the proposed method has excellent accuracy and classification speed.</abstract><pub>IEEE</pub><doi>10.1109/IITA.2008.261</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769534978
ispartof 2008 Second International Symposium on Intelligent Information Technology Application, 2008, Vol.3, p.47-51
issn
language eng
recordid cdi_ieee_primary_4739956
source IEEE Electronic Library (IEL) Conference Proceedings
subjects co-training
Information technology
Iterative algorithms
least square support vector machine
Machine learning
Machine learning algorithms
Postal services
proximal support vector machine
semi-supervised learning
Semisupervised learning
Supervised learning
support vector machine
Support vector machine classification
Support vector machines
tri-training
Unsupervised learning
title A Novel Semi-Supervised SVM Based on Tri-Training
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A30%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Novel%20Semi-Supervised%20SVM%20Based%20on%20Tri-Training&rft.btitle=2008%20Second%20International%20Symposium%20on%20Intelligent%20Information%20Technology%20Application&rft.au=KunLun%20Li&rft.date=2008-12&rft.volume=3&rft.spage=47&rft.epage=51&rft.pages=47-51&rft.isbn=9780769534978&rft.isbn_list=076953497X&rft_id=info:doi/10.1109/IITA.2008.261&rft_dat=%3Cieee_6IE%3E4739956%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4739956&rfr_iscdi=true