Reinforcement Learning Based on Active Learning Method

In this paper, a new reinforcement learning approach is proposed which is based on a powerful concept named Active Learning Method (ALM) in modeling. ALM expresses any multi-input-single-output system as a fuzzy combination of some single-input-single output systems. The proposed method is an actor-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sagha, H., Shouraki, S.B., Khasteh, H., Kiaei, A.A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 602
container_issue
container_start_page 598
container_title
container_volume 2
creator Sagha, H.
Shouraki, S.B.
Khasteh, H.
Kiaei, A.A.
description In this paper, a new reinforcement learning approach is proposed which is based on a powerful concept named Active Learning Method (ALM) in modeling. ALM expresses any multi-input-single-output system as a fuzzy combination of some single-input-single output systems. The proposed method is an actor-critic system similar to Generalized Approximate Reasoning based Intelligent Control (GARIC) structure to adapt the ALM by delayed reinforcement signals. Our system uses Temporal Difference (TD) learning to model the behavior of useful actions of a control system. The goodness of an action is modeled on Reward-Penalty-Plane. IDS planes will be updated according to this plane. It is shown that the system can learn with a predefined fuzzy system or without it (through random actions).
doi_str_mv 10.1109/IITA.2008.565
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4739834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4739834</ieee_id><sourcerecordid>4739834</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7715d3265c9378662f079777124f1647eedac43d65328954cb8b3706526d198a3</originalsourceid><addsrcrecordid>eNpFjU1LxEAQRAdkQV1z9OQlfyCx56OnZ45xUTcQEWQ9L7OZjo64iSRB8N8bUfBUj3pQJcSlhFJK8Nd1vatKBeBKtHgiMk8OyHrUZqGVOP9RHhxKPBXZNL0BgPSWJOKZsE-c-m4YWz5yP-cNh7FP_Ut-EyaO-dDnVTunT_4XDzy_DvFCrLrwPnH2l2vxfHe722yL5vG-3lRNkSThXNByErWy2HpNzlrVAXlaWmU6aQ0xx9AaHS1q5Tya9uAOmsCislF6F_RaXP3uJmbef4zpGMavvSHtnTb6G_UXQ-0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reinforcement Learning Based on Active Learning Method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sagha, H. ; Shouraki, S.B. ; Khasteh, H. ; Kiaei, A.A.</creator><creatorcontrib>Sagha, H. ; Shouraki, S.B. ; Khasteh, H. ; Kiaei, A.A.</creatorcontrib><description>In this paper, a new reinforcement learning approach is proposed which is based on a powerful concept named Active Learning Method (ALM) in modeling. ALM expresses any multi-input-single-output system as a fuzzy combination of some single-input-single output systems. The proposed method is an actor-critic system similar to Generalized Approximate Reasoning based Intelligent Control (GARIC) structure to adapt the ALM by delayed reinforcement signals. Our system uses Temporal Difference (TD) learning to model the behavior of useful actions of a control system. The goodness of an action is modeled on Reward-Penalty-Plane. IDS planes will be updated according to this plane. It is shown that the system can learn with a predefined fuzzy system or without it (through random actions).</description><identifier>ISBN: 9780769534978</identifier><identifier>ISBN: 076953497X</identifier><identifier>DOI: 10.1109/IITA.2008.565</identifier><identifier>LCCN: 2008908515</identifier><language>eng</language><publisher>IEEE</publisher><subject>Active Learning Method ; Control system synthesis ; Data mining ; Delay ; Fuzzy Control ; Fuzzy systems ; Gravity ; Information technology ; Intelligent control ; Intrusion detection ; Learning systems ; Power system modeling ; Reinforcement Learning</subject><ispartof>2008 Second International Symposium on Intelligent Information Technology Application, 2008, Vol.2, p.598-602</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4739834$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4739834$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sagha, H.</creatorcontrib><creatorcontrib>Shouraki, S.B.</creatorcontrib><creatorcontrib>Khasteh, H.</creatorcontrib><creatorcontrib>Kiaei, A.A.</creatorcontrib><title>Reinforcement Learning Based on Active Learning Method</title><title>2008 Second International Symposium on Intelligent Information Technology Application</title><addtitle>IITA</addtitle><description>In this paper, a new reinforcement learning approach is proposed which is based on a powerful concept named Active Learning Method (ALM) in modeling. ALM expresses any multi-input-single-output system as a fuzzy combination of some single-input-single output systems. The proposed method is an actor-critic system similar to Generalized Approximate Reasoning based Intelligent Control (GARIC) structure to adapt the ALM by delayed reinforcement signals. Our system uses Temporal Difference (TD) learning to model the behavior of useful actions of a control system. The goodness of an action is modeled on Reward-Penalty-Plane. IDS planes will be updated according to this plane. It is shown that the system can learn with a predefined fuzzy system or without it (through random actions).</description><subject>Active Learning Method</subject><subject>Control system synthesis</subject><subject>Data mining</subject><subject>Delay</subject><subject>Fuzzy Control</subject><subject>Fuzzy systems</subject><subject>Gravity</subject><subject>Information technology</subject><subject>Intelligent control</subject><subject>Intrusion detection</subject><subject>Learning systems</subject><subject>Power system modeling</subject><subject>Reinforcement Learning</subject><isbn>9780769534978</isbn><isbn>076953497X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFjU1LxEAQRAdkQV1z9OQlfyCx56OnZ45xUTcQEWQ9L7OZjo64iSRB8N8bUfBUj3pQJcSlhFJK8Nd1vatKBeBKtHgiMk8OyHrUZqGVOP9RHhxKPBXZNL0BgPSWJOKZsE-c-m4YWz5yP-cNh7FP_Ut-EyaO-dDnVTunT_4XDzy_DvFCrLrwPnH2l2vxfHe722yL5vG-3lRNkSThXNByErWy2HpNzlrVAXlaWmU6aQ0xx9AaHS1q5Tya9uAOmsCislF6F_RaXP3uJmbef4zpGMavvSHtnTb6G_UXQ-0</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Sagha, H.</creator><creator>Shouraki, S.B.</creator><creator>Khasteh, H.</creator><creator>Kiaei, A.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>Reinforcement Learning Based on Active Learning Method</title><author>Sagha, H. ; Shouraki, S.B. ; Khasteh, H. ; Kiaei, A.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7715d3265c9378662f079777124f1647eedac43d65328954cb8b3706526d198a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Active Learning Method</topic><topic>Control system synthesis</topic><topic>Data mining</topic><topic>Delay</topic><topic>Fuzzy Control</topic><topic>Fuzzy systems</topic><topic>Gravity</topic><topic>Information technology</topic><topic>Intelligent control</topic><topic>Intrusion detection</topic><topic>Learning systems</topic><topic>Power system modeling</topic><topic>Reinforcement Learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Sagha, H.</creatorcontrib><creatorcontrib>Shouraki, S.B.</creatorcontrib><creatorcontrib>Khasteh, H.</creatorcontrib><creatorcontrib>Kiaei, A.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sagha, H.</au><au>Shouraki, S.B.</au><au>Khasteh, H.</au><au>Kiaei, A.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reinforcement Learning Based on Active Learning Method</atitle><btitle>2008 Second International Symposium on Intelligent Information Technology Application</btitle><stitle>IITA</stitle><date>2008-12</date><risdate>2008</risdate><volume>2</volume><spage>598</spage><epage>602</epage><pages>598-602</pages><isbn>9780769534978</isbn><isbn>076953497X</isbn><abstract>In this paper, a new reinforcement learning approach is proposed which is based on a powerful concept named Active Learning Method (ALM) in modeling. ALM expresses any multi-input-single-output system as a fuzzy combination of some single-input-single output systems. The proposed method is an actor-critic system similar to Generalized Approximate Reasoning based Intelligent Control (GARIC) structure to adapt the ALM by delayed reinforcement signals. Our system uses Temporal Difference (TD) learning to model the behavior of useful actions of a control system. The goodness of an action is modeled on Reward-Penalty-Plane. IDS planes will be updated according to this plane. It is shown that the system can learn with a predefined fuzzy system or without it (through random actions).</abstract><pub>IEEE</pub><doi>10.1109/IITA.2008.565</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769534978
ispartof 2008 Second International Symposium on Intelligent Information Technology Application, 2008, Vol.2, p.598-602
issn
language eng
recordid cdi_ieee_primary_4739834
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Active Learning Method
Control system synthesis
Data mining
Delay
Fuzzy Control
Fuzzy systems
Gravity
Information technology
Intelligent control
Intrusion detection
Learning systems
Power system modeling
Reinforcement Learning
title Reinforcement Learning Based on Active Learning Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A55%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reinforcement%20Learning%20Based%20on%20Active%20Learning%20Method&rft.btitle=2008%20Second%20International%20Symposium%20on%20Intelligent%20Information%20Technology%20Application&rft.au=Sagha,%20H.&rft.date=2008-12&rft.volume=2&rft.spage=598&rft.epage=602&rft.pages=598-602&rft.isbn=9780769534978&rft.isbn_list=076953497X&rft_id=info:doi/10.1109/IITA.2008.565&rft_dat=%3Cieee_6IE%3E4739834%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4739834&rfr_iscdi=true