A sparsification approach to set membership identification of a class of affine hybrid systems

This paper addresses the problem of robust identification of a class of discrete-time affine hybrid systems, switched affine models, in a set membership framework. Given a finite collection of noisy input/output data and some minimal a priori information about the set of admissible plants, the objec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ozay, N., Sznaier, M., Lagoa, C., Camps, O.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 130
container_issue
container_start_page 123
container_title
container_volume
creator Ozay, N.
Sznaier, M.
Lagoa, C.
Camps, O.
description This paper addresses the problem of robust identification of a class of discrete-time affine hybrid systems, switched affine models, in a set membership framework. Given a finite collection of noisy input/output data and some minimal a priori information about the set of admissible plants, the objective is to identify a suitable set of affine models along with a switching sequence that can explain the available experimental information, while optimizing a performance criteria (either minimum number of switches or minimum number of plants). Our main result shows that this problem can be reduced to a sparsification form, where the goal is to maximize sparsity of a given vector sequence. Although in principle this leads to an NP-hard problem, as we show in the paper, efficient convex relaxations can be obtained by exploiting recent results on sparse signal recovery. These results are illustrated using two non-trivial problems arising in computer vision applications: video-shot and dynamic texture segmentation.
doi_str_mv 10.1109/CDC.2008.4739300
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4739300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4739300</ieee_id><sourcerecordid>4739300</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-958f256275203ef349265476b6e27a96fb35baef09d124f32a3ec874f89393853</originalsourceid><addsrcrecordid>eNpVkEtLw0AcxFe0YK29C172CyTu-3Es0apQ8KJXyyb5L1lpHuzuJd_eoAXxNDMw_GAGoTtKSkqJfageq5IRYkqhueWEXKCt1YYKJgSnTPDLf5mrK7Qm1NKCMapWaK1toQSxil6jm5S-yEIiSq3R5w6nycUUfGhcDuOA3TTF0TUdziNOkHEPfQ0xdWHCoYUh_zVHjx1uTi6lH-t9GAB3cx1Di9OcMvTpFq28OyXYnnWDPvZP79VLcXh7fq12hyJQLXNhpfFMKqYlIxw8F5YpKbSqFTDtrPI1l7UDT2y7bPWcOQ6N0cIbu5xhJN-g-19uAIDjFEPv4nw8X8W_AdEIWA0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A sparsification approach to set membership identification of a class of affine hybrid systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ozay, N. ; Sznaier, M. ; Lagoa, C. ; Camps, O.</creator><creatorcontrib>Ozay, N. ; Sznaier, M. ; Lagoa, C. ; Camps, O.</creatorcontrib><description>This paper addresses the problem of robust identification of a class of discrete-time affine hybrid systems, switched affine models, in a set membership framework. Given a finite collection of noisy input/output data and some minimal a priori information about the set of admissible plants, the objective is to identify a suitable set of affine models along with a switching sequence that can explain the available experimental information, while optimizing a performance criteria (either minimum number of switches or minimum number of plants). Our main result shows that this problem can be reduced to a sparsification form, where the goal is to maximize sparsity of a given vector sequence. Although in principle this leads to an NP-hard problem, as we show in the paper, efficient convex relaxations can be obtained by exploiting recent results on sparse signal recovery. These results are illustrated using two non-trivial problems arising in computer vision applications: video-shot and dynamic texture segmentation.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781424431236</identifier><identifier>ISBN: 1424431239</identifier><identifier>EISBN: 9781424431243</identifier><identifier>EISBN: 1424431247</identifier><identifier>DOI: 10.1109/CDC.2008.4739300</identifier><identifier>LCCN: 79-640961</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Biological systems ; Computational complexity ; Computer vision ; Control systems ; NP-hard problem ; Object recognition ; Optimization methods ; Robustness ; Switches</subject><ispartof>2008 47th IEEE Conference on Decision and Control, 2008, p.123-130</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4739300$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4739300$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ozay, N.</creatorcontrib><creatorcontrib>Sznaier, M.</creatorcontrib><creatorcontrib>Lagoa, C.</creatorcontrib><creatorcontrib>Camps, O.</creatorcontrib><title>A sparsification approach to set membership identification of a class of affine hybrid systems</title><title>2008 47th IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>This paper addresses the problem of robust identification of a class of discrete-time affine hybrid systems, switched affine models, in a set membership framework. Given a finite collection of noisy input/output data and some minimal a priori information about the set of admissible plants, the objective is to identify a suitable set of affine models along with a switching sequence that can explain the available experimental information, while optimizing a performance criteria (either minimum number of switches or minimum number of plants). Our main result shows that this problem can be reduced to a sparsification form, where the goal is to maximize sparsity of a given vector sequence. Although in principle this leads to an NP-hard problem, as we show in the paper, efficient convex relaxations can be obtained by exploiting recent results on sparse signal recovery. These results are illustrated using two non-trivial problems arising in computer vision applications: video-shot and dynamic texture segmentation.</description><subject>Application software</subject><subject>Biological systems</subject><subject>Computational complexity</subject><subject>Computer vision</subject><subject>Control systems</subject><subject>NP-hard problem</subject><subject>Object recognition</subject><subject>Optimization methods</subject><subject>Robustness</subject><subject>Switches</subject><issn>0191-2216</issn><isbn>9781424431236</isbn><isbn>1424431239</isbn><isbn>9781424431243</isbn><isbn>1424431247</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkEtLw0AcxFe0YK29C172CyTu-3Es0apQ8KJXyyb5L1lpHuzuJd_eoAXxNDMw_GAGoTtKSkqJfageq5IRYkqhueWEXKCt1YYKJgSnTPDLf5mrK7Qm1NKCMapWaK1toQSxil6jm5S-yEIiSq3R5w6nycUUfGhcDuOA3TTF0TUdziNOkHEPfQ0xdWHCoYUh_zVHjx1uTi6lH-t9GAB3cx1Di9OcMvTpFq28OyXYnnWDPvZP79VLcXh7fq12hyJQLXNhpfFMKqYlIxw8F5YpKbSqFTDtrPI1l7UDT2y7bPWcOQ6N0cIbu5xhJN-g-19uAIDjFEPv4nw8X8W_AdEIWA0</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Ozay, N.</creator><creator>Sznaier, M.</creator><creator>Lagoa, C.</creator><creator>Camps, O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200812</creationdate><title>A sparsification approach to set membership identification of a class of affine hybrid systems</title><author>Ozay, N. ; Sznaier, M. ; Lagoa, C. ; Camps, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-958f256275203ef349265476b6e27a96fb35baef09d124f32a3ec874f89393853</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Application software</topic><topic>Biological systems</topic><topic>Computational complexity</topic><topic>Computer vision</topic><topic>Control systems</topic><topic>NP-hard problem</topic><topic>Object recognition</topic><topic>Optimization methods</topic><topic>Robustness</topic><topic>Switches</topic><toplevel>online_resources</toplevel><creatorcontrib>Ozay, N.</creatorcontrib><creatorcontrib>Sznaier, M.</creatorcontrib><creatorcontrib>Lagoa, C.</creatorcontrib><creatorcontrib>Camps, O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ozay, N.</au><au>Sznaier, M.</au><au>Lagoa, C.</au><au>Camps, O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A sparsification approach to set membership identification of a class of affine hybrid systems</atitle><btitle>2008 47th IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>2008-12</date><risdate>2008</risdate><spage>123</spage><epage>130</epage><pages>123-130</pages><issn>0191-2216</issn><isbn>9781424431236</isbn><isbn>1424431239</isbn><eisbn>9781424431243</eisbn><eisbn>1424431247</eisbn><abstract>This paper addresses the problem of robust identification of a class of discrete-time affine hybrid systems, switched affine models, in a set membership framework. Given a finite collection of noisy input/output data and some minimal a priori information about the set of admissible plants, the objective is to identify a suitable set of affine models along with a switching sequence that can explain the available experimental information, while optimizing a performance criteria (either minimum number of switches or minimum number of plants). Our main result shows that this problem can be reduced to a sparsification form, where the goal is to maximize sparsity of a given vector sequence. Although in principle this leads to an NP-hard problem, as we show in the paper, efficient convex relaxations can be obtained by exploiting recent results on sparse signal recovery. These results are illustrated using two non-trivial problems arising in computer vision applications: video-shot and dynamic texture segmentation.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2008.4739300</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof 2008 47th IEEE Conference on Decision and Control, 2008, p.123-130
issn 0191-2216
language eng
recordid cdi_ieee_primary_4739300
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Biological systems
Computational complexity
Computer vision
Control systems
NP-hard problem
Object recognition
Optimization methods
Robustness
Switches
title A sparsification approach to set membership identification of a class of affine hybrid systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T08%3A09%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20sparsification%20approach%20to%20set%20membership%20identification%20of%20a%20class%20of%20affine%20hybrid%20systems&rft.btitle=2008%2047th%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Ozay,%20N.&rft.date=2008-12&rft.spage=123&rft.epage=130&rft.pages=123-130&rft.issn=0191-2216&rft.isbn=9781424431236&rft.isbn_list=1424431239&rft_id=info:doi/10.1109/CDC.2008.4739300&rft_dat=%3Cieee_6IE%3E4739300%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424431243&rft.eisbn_list=1424431247&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4739300&rfr_iscdi=true