Analysis and Optimization of the PGC Method in All Digital Demodulation Systems

In this paper, we analyze and optimize the PGC demodulation algorithm for optical interferometers in order to extend its usage in low-cost all digital schemes. In our low-cost system, we choose heterodyne interferometer and direct modulation on Distributed FeedBack (DFB) laser and optimize the algor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2008-09, Vol.26 (18), p.3225-3233
Hauptverfasser: Liu, Yang, Wang, Liwei, Tian, Changdong, Zhang, Min, Liao, Yanbiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3233
container_issue 18
container_start_page 3225
container_title Journal of lightwave technology
container_volume 26
creator Liu, Yang
Wang, Liwei
Tian, Changdong
Zhang, Min
Liao, Yanbiao
description In this paper, we analyze and optimize the PGC demodulation algorithm for optical interferometers in order to extend its usage in low-cost all digital schemes. In our low-cost system, we choose heterodyne interferometer and direct modulation on Distributed FeedBack (DFB) laser and optimize the algorithm, as well as some of the system parameters in order to have the best linearity and noise performance. We first analyze the influence of low-pass filters (LPF) in the PGC-DCM algorithm. A detailed theoretical model of LPF is deduced and reveals that a nonideal LPF is the major limit of linearity in digital systems. Experimental results show that the PGC-atan algorithm will have a 40-dB higher linearity than PGC-DCM one with a 60-order digital FIR filter. Then we analyze the influence of the intensity modulation in PGC-atan algorithm, the main source of the nonlinearity in PGC-atan algorithm, and propose a simple but effective modification. Experiment results verified that it can reduce the influence of intensity modulation by about 20 dB. Further, the impact of Light Intensity Noise (LIN) and circuit noise on the output noise level is analyzed. Equations are derived to calculate the Power Spectrum (PS) of output noise caused by LIN or circuit noise. Simulations show that the theoretical analysis is of high accuracy-less than 0.5 dB. With these equations, a new parameter-Noise Transfer Factor-is defined for better discription of the noise performance of PGC. The results show that the modulation depth C and the DC work point Phi = mean(phi( t )) have great impact on the output noise level. By changing C and Phi , the output noise may decrease as much as about 20 dB. Then three examples show how to choose the system parameter according to the characteristics of LIN or circuit noise. As well, the noise performance of PGC-DCM is analyzed. The result reveals a turning point at the output noise base, which worsens its noise performance at lower frequency. PGC-DCM has the same NTF at frequency higher than the turning frequency. A parameter Frequency Conversion Coefficient is introduce to calculate the turning point.
doi_str_mv 10.1109/JLT.2008.928926
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4738523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4738523</ieee_id><sourcerecordid>36336048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-7a292bc17f0f661c1082d44f10939f2ed3ea084a758dd8d892a2fe153f3844b53</originalsourceid><addsrcrecordid>eNp9kTtPwzAUhS0EEqUwM7BYDDCl9TN2xqpAARUViTJbbmxTV3mU2B3Kr8dVEAMD012-c6RzPwAuMRphjIrx83w5IgjJUUFkQfIjMMCcy4wQTI_BAAlKMykIOwVnIWwQwoxJMQCLSaOrffAB6sbAxTb62n_p6NsGtg7GtYWvsyl8sXHdGugbOKkqeOc_fNTp2ro1u6qn3_Yh2jqcgxOnq2Avfu4QvD_cL6eP2Xwxe5pO5llJOY6Z0KQgqxILh1ye4xIjSQxjLg2hhSPWUKuRZFpwaYw0aZAmzmJOHZWMrTgdgtu-d9u1nzsboqp9KG1V6ca2u6Ck4IgLUuBE3vxL0pzSHDGZwOs_4Kbddek9qS0nUmLMRILGPVR2bQiddWrb-Vp3e4WROnhQyYM6eFC9h5S46hPeWvtLpyrJCaXfeuOBug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862881147</pqid></control><display><type>article</type><title>Analysis and Optimization of the PGC Method in All Digital Demodulation Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Yang ; Wang, Liwei ; Tian, Changdong ; Zhang, Min ; Liao, Yanbiao</creator><creatorcontrib>Liu, Yang ; Wang, Liwei ; Tian, Changdong ; Zhang, Min ; Liao, Yanbiao</creatorcontrib><description>In this paper, we analyze and optimize the PGC demodulation algorithm for optical interferometers in order to extend its usage in low-cost all digital schemes. In our low-cost system, we choose heterodyne interferometer and direct modulation on Distributed FeedBack (DFB) laser and optimize the algorithm, as well as some of the system parameters in order to have the best linearity and noise performance. We first analyze the influence of low-pass filters (LPF) in the PGC-DCM algorithm. A detailed theoretical model of LPF is deduced and reveals that a nonideal LPF is the major limit of linearity in digital systems. Experimental results show that the PGC-atan algorithm will have a 40-dB higher linearity than PGC-DCM one with a 60-order digital FIR filter. Then we analyze the influence of the intensity modulation in PGC-atan algorithm, the main source of the nonlinearity in PGC-atan algorithm, and propose a simple but effective modification. Experiment results verified that it can reduce the influence of intensity modulation by about 20 dB. Further, the impact of Light Intensity Noise (LIN) and circuit noise on the output noise level is analyzed. Equations are derived to calculate the Power Spectrum (PS) of output noise caused by LIN or circuit noise. Simulations show that the theoretical analysis is of high accuracy-less than 0.5 dB. With these equations, a new parameter-Noise Transfer Factor-is defined for better discription of the noise performance of PGC. The results show that the modulation depth C and the DC work point Phi = mean(phi( t )) have great impact on the output noise level. By changing C and Phi , the output noise may decrease as much as about 20 dB. Then three examples show how to choose the system parameter according to the characteristics of LIN or circuit noise. As well, the noise performance of PGC-DCM is analyzed. The result reveals a turning point at the output noise base, which worsens its noise performance at lower frequency. PGC-DCM has the same NTF at frequency higher than the turning frequency. A parameter Frequency Conversion Coefficient is introduce to calculate the turning point.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2008.928926</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Circuit noise ; Demodulation ; Distributed feedback devices ; Fiber interferometer ; filter ; Frequency ; Linearity ; Mathematical analysis ; Mathematical models ; Modulation ; Noise ; Noise level ; Noise levels ; Optical noise ; Optimization methods ; Phase Generator Carrier (PGC) ; Studies ; Turning</subject><ispartof>Journal of lightwave technology, 2008-09, Vol.26 (18), p.3225-3233</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-7a292bc17f0f661c1082d44f10939f2ed3ea084a758dd8d892a2fe153f3844b53</citedby><cites>FETCH-LOGICAL-c351t-7a292bc17f0f661c1082d44f10939f2ed3ea084a758dd8d892a2fe153f3844b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4738523$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4738523$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Wang, Liwei</creatorcontrib><creatorcontrib>Tian, Changdong</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Liao, Yanbiao</creatorcontrib><title>Analysis and Optimization of the PGC Method in All Digital Demodulation Systems</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>In this paper, we analyze and optimize the PGC demodulation algorithm for optical interferometers in order to extend its usage in low-cost all digital schemes. In our low-cost system, we choose heterodyne interferometer and direct modulation on Distributed FeedBack (DFB) laser and optimize the algorithm, as well as some of the system parameters in order to have the best linearity and noise performance. We first analyze the influence of low-pass filters (LPF) in the PGC-DCM algorithm. A detailed theoretical model of LPF is deduced and reveals that a nonideal LPF is the major limit of linearity in digital systems. Experimental results show that the PGC-atan algorithm will have a 40-dB higher linearity than PGC-DCM one with a 60-order digital FIR filter. Then we analyze the influence of the intensity modulation in PGC-atan algorithm, the main source of the nonlinearity in PGC-atan algorithm, and propose a simple but effective modification. Experiment results verified that it can reduce the influence of intensity modulation by about 20 dB. Further, the impact of Light Intensity Noise (LIN) and circuit noise on the output noise level is analyzed. Equations are derived to calculate the Power Spectrum (PS) of output noise caused by LIN or circuit noise. Simulations show that the theoretical analysis is of high accuracy-less than 0.5 dB. With these equations, a new parameter-Noise Transfer Factor-is defined for better discription of the noise performance of PGC. The results show that the modulation depth C and the DC work point Phi = mean(phi( t )) have great impact on the output noise level. By changing C and Phi , the output noise may decrease as much as about 20 dB. Then three examples show how to choose the system parameter according to the characteristics of LIN or circuit noise. As well, the noise performance of PGC-DCM is analyzed. The result reveals a turning point at the output noise base, which worsens its noise performance at lower frequency. PGC-DCM has the same NTF at frequency higher than the turning frequency. A parameter Frequency Conversion Coefficient is introduce to calculate the turning point.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Circuit noise</subject><subject>Demodulation</subject><subject>Distributed feedback devices</subject><subject>Fiber interferometer</subject><subject>filter</subject><subject>Frequency</subject><subject>Linearity</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Modulation</subject><subject>Noise</subject><subject>Noise level</subject><subject>Noise levels</subject><subject>Optical noise</subject><subject>Optimization methods</subject><subject>Phase Generator Carrier (PGC)</subject><subject>Studies</subject><subject>Turning</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kTtPwzAUhS0EEqUwM7BYDDCl9TN2xqpAARUViTJbbmxTV3mU2B3Kr8dVEAMD012-c6RzPwAuMRphjIrx83w5IgjJUUFkQfIjMMCcy4wQTI_BAAlKMykIOwVnIWwQwoxJMQCLSaOrffAB6sbAxTb62n_p6NsGtg7GtYWvsyl8sXHdGugbOKkqeOc_fNTp2ro1u6qn3_Yh2jqcgxOnq2Avfu4QvD_cL6eP2Xwxe5pO5llJOY6Z0KQgqxILh1ye4xIjSQxjLg2hhSPWUKuRZFpwaYw0aZAmzmJOHZWMrTgdgtu-d9u1nzsboqp9KG1V6ca2u6Ck4IgLUuBE3vxL0pzSHDGZwOs_4Kbddek9qS0nUmLMRILGPVR2bQiddWrb-Vp3e4WROnhQyYM6eFC9h5S46hPeWvtLpyrJCaXfeuOBug</recordid><startdate>20080915</startdate><enddate>20080915</enddate><creator>Liu, Yang</creator><creator>Wang, Liwei</creator><creator>Tian, Changdong</creator><creator>Zhang, Min</creator><creator>Liao, Yanbiao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20080915</creationdate><title>Analysis and Optimization of the PGC Method in All Digital Demodulation Systems</title><author>Liu, Yang ; Wang, Liwei ; Tian, Changdong ; Zhang, Min ; Liao, Yanbiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-7a292bc17f0f661c1082d44f10939f2ed3ea084a758dd8d892a2fe153f3844b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Circuit noise</topic><topic>Demodulation</topic><topic>Distributed feedback devices</topic><topic>Fiber interferometer</topic><topic>filter</topic><topic>Frequency</topic><topic>Linearity</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Modulation</topic><topic>Noise</topic><topic>Noise level</topic><topic>Noise levels</topic><topic>Optical noise</topic><topic>Optimization methods</topic><topic>Phase Generator Carrier (PGC)</topic><topic>Studies</topic><topic>Turning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Wang, Liwei</creatorcontrib><creatorcontrib>Tian, Changdong</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Liao, Yanbiao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Yang</au><au>Wang, Liwei</au><au>Tian, Changdong</au><au>Zhang, Min</au><au>Liao, Yanbiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and Optimization of the PGC Method in All Digital Demodulation Systems</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2008-09-15</date><risdate>2008</risdate><volume>26</volume><issue>18</issue><spage>3225</spage><epage>3233</epage><pages>3225-3233</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>In this paper, we analyze and optimize the PGC demodulation algorithm for optical interferometers in order to extend its usage in low-cost all digital schemes. In our low-cost system, we choose heterodyne interferometer and direct modulation on Distributed FeedBack (DFB) laser and optimize the algorithm, as well as some of the system parameters in order to have the best linearity and noise performance. We first analyze the influence of low-pass filters (LPF) in the PGC-DCM algorithm. A detailed theoretical model of LPF is deduced and reveals that a nonideal LPF is the major limit of linearity in digital systems. Experimental results show that the PGC-atan algorithm will have a 40-dB higher linearity than PGC-DCM one with a 60-order digital FIR filter. Then we analyze the influence of the intensity modulation in PGC-atan algorithm, the main source of the nonlinearity in PGC-atan algorithm, and propose a simple but effective modification. Experiment results verified that it can reduce the influence of intensity modulation by about 20 dB. Further, the impact of Light Intensity Noise (LIN) and circuit noise on the output noise level is analyzed. Equations are derived to calculate the Power Spectrum (PS) of output noise caused by LIN or circuit noise. Simulations show that the theoretical analysis is of high accuracy-less than 0.5 dB. With these equations, a new parameter-Noise Transfer Factor-is defined for better discription of the noise performance of PGC. The results show that the modulation depth C and the DC work point Phi = mean(phi( t )) have great impact on the output noise level. By changing C and Phi , the output noise may decrease as much as about 20 dB. Then three examples show how to choose the system parameter according to the characteristics of LIN or circuit noise. As well, the noise performance of PGC-DCM is analyzed. The result reveals a turning point at the output noise base, which worsens its noise performance at lower frequency. PGC-DCM has the same NTF at frequency higher than the turning frequency. A parameter Frequency Conversion Coefficient is introduce to calculate the turning point.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2008.928926</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2008-09, Vol.26 (18), p.3225-3233
issn 0733-8724
1558-2213
language eng
recordid cdi_ieee_primary_4738523
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Circuit noise
Demodulation
Distributed feedback devices
Fiber interferometer
filter
Frequency
Linearity
Mathematical analysis
Mathematical models
Modulation
Noise
Noise level
Noise levels
Optical noise
Optimization methods
Phase Generator Carrier (PGC)
Studies
Turning
title Analysis and Optimization of the PGC Method in All Digital Demodulation Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A08%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20Optimization%20of%20the%20PGC%20Method%20in%20All%20Digital%20Demodulation%20Systems&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Liu,%20Yang&rft.date=2008-09-15&rft.volume=26&rft.issue=18&rft.spage=3225&rft.epage=3233&rft.pages=3225-3233&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2008.928926&rft_dat=%3Cproquest_RIE%3E36336048%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862881147&rft_id=info:pmid/&rft_ieee_id=4738523&rfr_iscdi=true