Parallel Multidimensional Scaling Performance on Multicore Systems
Multidimensional scaling constructs a configuration points into the target low-dimensional space, while the interpoint distances are approximated to the corresponding known dissimilarity values as much as possible. SMACOF algorithm is an elegant gradient descent approach to solve Multidimensional sc...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 702 |
---|---|
container_issue | |
container_start_page | 695 |
container_title | |
container_volume | |
creator | Seung-Hee Bae |
description | Multidimensional scaling constructs a configuration points into the target low-dimensional space, while the interpoint distances are approximated to the corresponding known dissimilarity values as much as possible. SMACOF algorithm is an elegant gradient descent approach to solve Multidimensional scaling problem. We design parallel SMACOF program using parallel matrix multiplication to run on a multicore machine. Also, we propose a block decomposition algorithm based on the number of threads for the purpose of keeping good load balance. The proposed block decomposition algorithm works very well if the number of block columns is at least a half of the number of threads. In this paper, we investigate performance results of the implemented parallel SMACOF in terms of the block size, data size, and the number of threads. The speedup factor is almost 7.7 with 2048 points data over 8 running threads. In addition, performance comparison between jagged array and two-dimensional array in C# language is carried out. The jagged array data structure performs at least 40% better than the two-dimensional array structure. |
doi_str_mv | 10.1109/eScience.2008.81 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4736886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4736886</ieee_id><sourcerecordid>4736886</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c3b9bf777dcdbcd00dae9c7b5db518a4a25a1a9695b018644e67d2ecf7a95ecd3</originalsourceid><addsrcrecordid>eNotTs1KxDAYjIigrL0LXvoCXZPm_6iLusKKC9378iX5KpG0laQe9u0trjOHYWCYGULuGF0zRu0Ddj7i6HHdUmrWhl2QympDtbKSL9SXf56JVgjODeXXpCrliy4QkitJb8jTHjKkhKl-_0lzDHHAscRphFR3HlIcP-s95n7KAyw79TSec37KWHenMuNQbslVD6lg9a8rcnh5Pmy2ze7j9W3zuGuipXPjubOu11oHH5wPlAZA67WTwUlmQEArgYFdnjvKjBIClQ4t-l6DlegDX5H7c21ExON3jgPk01ForoxR_BeDxk5X</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parallel Multidimensional Scaling Performance on Multicore Systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Seung-Hee Bae</creator><creatorcontrib>Seung-Hee Bae</creatorcontrib><description>Multidimensional scaling constructs a configuration points into the target low-dimensional space, while the interpoint distances are approximated to the corresponding known dissimilarity values as much as possible. SMACOF algorithm is an elegant gradient descent approach to solve Multidimensional scaling problem. We design parallel SMACOF program using parallel matrix multiplication to run on a multicore machine. Also, we propose a block decomposition algorithm based on the number of threads for the purpose of keeping good load balance. The proposed block decomposition algorithm works very well if the number of block columns is at least a half of the number of threads. In this paper, we investigate performance results of the implemented parallel SMACOF in terms of the block size, data size, and the number of threads. The speedup factor is almost 7.7 with 2048 points data over 8 running threads. In addition, performance comparison between jagged array and two-dimensional array in C# language is carried out. The jagged array data structure performs at least 40% better than the two-dimensional array structure.</description><identifier>ISBN: 9781424433803</identifier><identifier>ISBN: 1424433800</identifier><identifier>EISBN: 9780769535357</identifier><identifier>EISBN: 0769535356</identifier><identifier>DOI: 10.1109/eScience.2008.81</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer architecture ; Concurrent computing ; Data mining ; Data visualization ; Explosions ; Machine learning algorithms ; MDS ; Multicore ; Multicore processing ; Multidimensional systems ; Parallel Matrix Multiplication ; Parallel processing ; SMACOF ; Yarn</subject><ispartof>2008 IEEE Fourth International Conference on eScience, 2008, p.695-702</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4736886$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4736886$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Seung-Hee Bae</creatorcontrib><title>Parallel Multidimensional Scaling Performance on Multicore Systems</title><title>2008 IEEE Fourth International Conference on eScience</title><addtitle>ESCIENCE</addtitle><description>Multidimensional scaling constructs a configuration points into the target low-dimensional space, while the interpoint distances are approximated to the corresponding known dissimilarity values as much as possible. SMACOF algorithm is an elegant gradient descent approach to solve Multidimensional scaling problem. We design parallel SMACOF program using parallel matrix multiplication to run on a multicore machine. Also, we propose a block decomposition algorithm based on the number of threads for the purpose of keeping good load balance. The proposed block decomposition algorithm works very well if the number of block columns is at least a half of the number of threads. In this paper, we investigate performance results of the implemented parallel SMACOF in terms of the block size, data size, and the number of threads. The speedup factor is almost 7.7 with 2048 points data over 8 running threads. In addition, performance comparison between jagged array and two-dimensional array in C# language is carried out. The jagged array data structure performs at least 40% better than the two-dimensional array structure.</description><subject>Computer architecture</subject><subject>Concurrent computing</subject><subject>Data mining</subject><subject>Data visualization</subject><subject>Explosions</subject><subject>Machine learning algorithms</subject><subject>MDS</subject><subject>Multicore</subject><subject>Multicore processing</subject><subject>Multidimensional systems</subject><subject>Parallel Matrix Multiplication</subject><subject>Parallel processing</subject><subject>SMACOF</subject><subject>Yarn</subject><isbn>9781424433803</isbn><isbn>1424433800</isbn><isbn>9780769535357</isbn><isbn>0769535356</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotTs1KxDAYjIigrL0LXvoCXZPm_6iLusKKC9378iX5KpG0laQe9u0trjOHYWCYGULuGF0zRu0Ddj7i6HHdUmrWhl2QympDtbKSL9SXf56JVgjODeXXpCrliy4QkitJb8jTHjKkhKl-_0lzDHHAscRphFR3HlIcP-s95n7KAyw79TSec37KWHenMuNQbslVD6lg9a8rcnh5Pmy2ze7j9W3zuGuipXPjubOu11oHH5wPlAZA67WTwUlmQEArgYFdnjvKjBIClQ4t-l6DlegDX5H7c21ExON3jgPk01ForoxR_BeDxk5X</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Seung-Hee Bae</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>Parallel Multidimensional Scaling Performance on Multicore Systems</title><author>Seung-Hee Bae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c3b9bf777dcdbcd00dae9c7b5db518a4a25a1a9695b018644e67d2ecf7a95ecd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computer architecture</topic><topic>Concurrent computing</topic><topic>Data mining</topic><topic>Data visualization</topic><topic>Explosions</topic><topic>Machine learning algorithms</topic><topic>MDS</topic><topic>Multicore</topic><topic>Multicore processing</topic><topic>Multidimensional systems</topic><topic>Parallel Matrix Multiplication</topic><topic>Parallel processing</topic><topic>SMACOF</topic><topic>Yarn</topic><toplevel>online_resources</toplevel><creatorcontrib>Seung-Hee Bae</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seung-Hee Bae</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parallel Multidimensional Scaling Performance on Multicore Systems</atitle><btitle>2008 IEEE Fourth International Conference on eScience</btitle><stitle>ESCIENCE</stitle><date>2008-12</date><risdate>2008</risdate><spage>695</spage><epage>702</epage><pages>695-702</pages><isbn>9781424433803</isbn><isbn>1424433800</isbn><eisbn>9780769535357</eisbn><eisbn>0769535356</eisbn><abstract>Multidimensional scaling constructs a configuration points into the target low-dimensional space, while the interpoint distances are approximated to the corresponding known dissimilarity values as much as possible. SMACOF algorithm is an elegant gradient descent approach to solve Multidimensional scaling problem. We design parallel SMACOF program using parallel matrix multiplication to run on a multicore machine. Also, we propose a block decomposition algorithm based on the number of threads for the purpose of keeping good load balance. The proposed block decomposition algorithm works very well if the number of block columns is at least a half of the number of threads. In this paper, we investigate performance results of the implemented parallel SMACOF in terms of the block size, data size, and the number of threads. The speedup factor is almost 7.7 with 2048 points data over 8 running threads. In addition, performance comparison between jagged array and two-dimensional array in C# language is carried out. The jagged array data structure performs at least 40% better than the two-dimensional array structure.</abstract><pub>IEEE</pub><doi>10.1109/eScience.2008.81</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424433803 |
ispartof | 2008 IEEE Fourth International Conference on eScience, 2008, p.695-702 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4736886 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer architecture Concurrent computing Data mining Data visualization Explosions Machine learning algorithms MDS Multicore Multicore processing Multidimensional systems Parallel Matrix Multiplication Parallel processing SMACOF Yarn |
title | Parallel Multidimensional Scaling Performance on Multicore Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A48%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parallel%20Multidimensional%20Scaling%20Performance%20on%20Multicore%20Systems&rft.btitle=2008%20IEEE%20Fourth%20International%20Conference%20on%20eScience&rft.au=Seung-Hee%20Bae&rft.date=2008-12&rft.spage=695&rft.epage=702&rft.pages=695-702&rft.isbn=9781424433803&rft.isbn_list=1424433800&rft_id=info:doi/10.1109/eScience.2008.81&rft_dat=%3Cieee_6IE%3E4736886%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769535357&rft.eisbn_list=0769535356&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4736886&rfr_iscdi=true |