Parallel Multidimensional Scaling Performance on Multicore Systems

Multidimensional scaling constructs a configuration points into the target low-dimensional space, while the interpoint distances are approximated to the corresponding known dissimilarity values as much as possible. SMACOF algorithm is an elegant gradient descent approach to solve Multidimensional sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Seung-Hee Bae
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 702
container_issue
container_start_page 695
container_title
container_volume
creator Seung-Hee Bae
description Multidimensional scaling constructs a configuration points into the target low-dimensional space, while the interpoint distances are approximated to the corresponding known dissimilarity values as much as possible. SMACOF algorithm is an elegant gradient descent approach to solve Multidimensional scaling problem. We design parallel SMACOF program using parallel matrix multiplication to run on a multicore machine. Also, we propose a block decomposition algorithm based on the number of threads for the purpose of keeping good load balance. The proposed block decomposition algorithm works very well if the number of block columns is at least a half of the number of threads. In this paper, we investigate performance results of the implemented parallel SMACOF in terms of the block size, data size, and the number of threads. The speedup factor is almost 7.7 with 2048 points data over 8 running threads. In addition, performance comparison between jagged array and two-dimensional array in C# language is carried out. The jagged array data structure performs at least 40% better than the two-dimensional array structure.
doi_str_mv 10.1109/eScience.2008.81
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4736886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4736886</ieee_id><sourcerecordid>4736886</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c3b9bf777dcdbcd00dae9c7b5db518a4a25a1a9695b018644e67d2ecf7a95ecd3</originalsourceid><addsrcrecordid>eNotTs1KxDAYjIigrL0LXvoCXZPm_6iLusKKC9378iX5KpG0laQe9u0trjOHYWCYGULuGF0zRu0Ddj7i6HHdUmrWhl2QympDtbKSL9SXf56JVgjODeXXpCrliy4QkitJb8jTHjKkhKl-_0lzDHHAscRphFR3HlIcP-s95n7KAyw79TSec37KWHenMuNQbslVD6lg9a8rcnh5Pmy2ze7j9W3zuGuipXPjubOu11oHH5wPlAZA67WTwUlmQEArgYFdnjvKjBIClQ4t-l6DlegDX5H7c21ExON3jgPk01ForoxR_BeDxk5X</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parallel Multidimensional Scaling Performance on Multicore Systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Seung-Hee Bae</creator><creatorcontrib>Seung-Hee Bae</creatorcontrib><description>Multidimensional scaling constructs a configuration points into the target low-dimensional space, while the interpoint distances are approximated to the corresponding known dissimilarity values as much as possible. SMACOF algorithm is an elegant gradient descent approach to solve Multidimensional scaling problem. We design parallel SMACOF program using parallel matrix multiplication to run on a multicore machine. Also, we propose a block decomposition algorithm based on the number of threads for the purpose of keeping good load balance. The proposed block decomposition algorithm works very well if the number of block columns is at least a half of the number of threads. In this paper, we investigate performance results of the implemented parallel SMACOF in terms of the block size, data size, and the number of threads. The speedup factor is almost 7.7 with 2048 points data over 8 running threads. In addition, performance comparison between jagged array and two-dimensional array in C# language is carried out. The jagged array data structure performs at least 40% better than the two-dimensional array structure.</description><identifier>ISBN: 9781424433803</identifier><identifier>ISBN: 1424433800</identifier><identifier>EISBN: 9780769535357</identifier><identifier>EISBN: 0769535356</identifier><identifier>DOI: 10.1109/eScience.2008.81</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer architecture ; Concurrent computing ; Data mining ; Data visualization ; Explosions ; Machine learning algorithms ; MDS ; Multicore ; Multicore processing ; Multidimensional systems ; Parallel Matrix Multiplication ; Parallel processing ; SMACOF ; Yarn</subject><ispartof>2008 IEEE Fourth International Conference on eScience, 2008, p.695-702</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4736886$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4736886$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Seung-Hee Bae</creatorcontrib><title>Parallel Multidimensional Scaling Performance on Multicore Systems</title><title>2008 IEEE Fourth International Conference on eScience</title><addtitle>ESCIENCE</addtitle><description>Multidimensional scaling constructs a configuration points into the target low-dimensional space, while the interpoint distances are approximated to the corresponding known dissimilarity values as much as possible. SMACOF algorithm is an elegant gradient descent approach to solve Multidimensional scaling problem. We design parallel SMACOF program using parallel matrix multiplication to run on a multicore machine. Also, we propose a block decomposition algorithm based on the number of threads for the purpose of keeping good load balance. The proposed block decomposition algorithm works very well if the number of block columns is at least a half of the number of threads. In this paper, we investigate performance results of the implemented parallel SMACOF in terms of the block size, data size, and the number of threads. The speedup factor is almost 7.7 with 2048 points data over 8 running threads. In addition, performance comparison between jagged array and two-dimensional array in C# language is carried out. The jagged array data structure performs at least 40% better than the two-dimensional array structure.</description><subject>Computer architecture</subject><subject>Concurrent computing</subject><subject>Data mining</subject><subject>Data visualization</subject><subject>Explosions</subject><subject>Machine learning algorithms</subject><subject>MDS</subject><subject>Multicore</subject><subject>Multicore processing</subject><subject>Multidimensional systems</subject><subject>Parallel Matrix Multiplication</subject><subject>Parallel processing</subject><subject>SMACOF</subject><subject>Yarn</subject><isbn>9781424433803</isbn><isbn>1424433800</isbn><isbn>9780769535357</isbn><isbn>0769535356</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotTs1KxDAYjIigrL0LXvoCXZPm_6iLusKKC9378iX5KpG0laQe9u0trjOHYWCYGULuGF0zRu0Ddj7i6HHdUmrWhl2QympDtbKSL9SXf56JVgjODeXXpCrliy4QkitJb8jTHjKkhKl-_0lzDHHAscRphFR3HlIcP-s95n7KAyw79TSec37KWHenMuNQbslVD6lg9a8rcnh5Pmy2ze7j9W3zuGuipXPjubOu11oHH5wPlAZA67WTwUlmQEArgYFdnjvKjBIClQ4t-l6DlegDX5H7c21ExON3jgPk01ForoxR_BeDxk5X</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Seung-Hee Bae</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>Parallel Multidimensional Scaling Performance on Multicore Systems</title><author>Seung-Hee Bae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c3b9bf777dcdbcd00dae9c7b5db518a4a25a1a9695b018644e67d2ecf7a95ecd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computer architecture</topic><topic>Concurrent computing</topic><topic>Data mining</topic><topic>Data visualization</topic><topic>Explosions</topic><topic>Machine learning algorithms</topic><topic>MDS</topic><topic>Multicore</topic><topic>Multicore processing</topic><topic>Multidimensional systems</topic><topic>Parallel Matrix Multiplication</topic><topic>Parallel processing</topic><topic>SMACOF</topic><topic>Yarn</topic><toplevel>online_resources</toplevel><creatorcontrib>Seung-Hee Bae</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seung-Hee Bae</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parallel Multidimensional Scaling Performance on Multicore Systems</atitle><btitle>2008 IEEE Fourth International Conference on eScience</btitle><stitle>ESCIENCE</stitle><date>2008-12</date><risdate>2008</risdate><spage>695</spage><epage>702</epage><pages>695-702</pages><isbn>9781424433803</isbn><isbn>1424433800</isbn><eisbn>9780769535357</eisbn><eisbn>0769535356</eisbn><abstract>Multidimensional scaling constructs a configuration points into the target low-dimensional space, while the interpoint distances are approximated to the corresponding known dissimilarity values as much as possible. SMACOF algorithm is an elegant gradient descent approach to solve Multidimensional scaling problem. We design parallel SMACOF program using parallel matrix multiplication to run on a multicore machine. Also, we propose a block decomposition algorithm based on the number of threads for the purpose of keeping good load balance. The proposed block decomposition algorithm works very well if the number of block columns is at least a half of the number of threads. In this paper, we investigate performance results of the implemented parallel SMACOF in terms of the block size, data size, and the number of threads. The speedup factor is almost 7.7 with 2048 points data over 8 running threads. In addition, performance comparison between jagged array and two-dimensional array in C# language is carried out. The jagged array data structure performs at least 40% better than the two-dimensional array structure.</abstract><pub>IEEE</pub><doi>10.1109/eScience.2008.81</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424433803
ispartof 2008 IEEE Fourth International Conference on eScience, 2008, p.695-702
issn
language eng
recordid cdi_ieee_primary_4736886
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer architecture
Concurrent computing
Data mining
Data visualization
Explosions
Machine learning algorithms
MDS
Multicore
Multicore processing
Multidimensional systems
Parallel Matrix Multiplication
Parallel processing
SMACOF
Yarn
title Parallel Multidimensional Scaling Performance on Multicore Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A48%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parallel%20Multidimensional%20Scaling%20Performance%20on%20Multicore%20Systems&rft.btitle=2008%20IEEE%20Fourth%20International%20Conference%20on%20eScience&rft.au=Seung-Hee%20Bae&rft.date=2008-12&rft.spage=695&rft.epage=702&rft.pages=695-702&rft.isbn=9781424433803&rft.isbn_list=1424433800&rft_id=info:doi/10.1109/eScience.2008.81&rft_dat=%3Cieee_6IE%3E4736886%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769535357&rft.eisbn_list=0769535356&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4736886&rfr_iscdi=true