Parallel simulation of the global epidemiology of Avian Influenza
SEARUMS is an eco-modeling, bio-simulation, and analysis environment to study the global epidemiology of Avian Influenza. Originally developed in Java, SEARUMS enables comprehensive epidemiological analysis, forecast epicenters, and time lines of epidemics for prophylaxis; thereby mitigating disease...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1591 |
---|---|
container_issue | |
container_start_page | 1583 |
container_title | |
container_volume | |
creator | Rao, Dhananjai M. Chernyakhovsky, Alexander |
description | SEARUMS is an eco-modeling, bio-simulation, and analysis environment to study the global epidemiology of Avian Influenza. Originally developed in Java, SEARUMS enables comprehensive epidemiological analysis, forecast epicenters, and time lines of epidemics for prophylaxis; thereby mitigating disease outbreaks. However, SEARUMS-based simulations were time consuming due to the size and complexity of the models. In an endeavor to reduce time for simulation, we have redesigned the infrastructure of SEARUMS to operate as a time warp synchronized, parallel and distributed simulation. This paper presents our parallelization efforts along with empirical evaluation of various design alternatives that were explored to identify the ideal parallel simulation configuration. Our experiments indicate that the redesigned environment called SEARUMS++ achieves good scalability and performance, thus meeting a mission-critical objective. |
doi_str_mv | 10.1109/WSC.2008.4736241 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4736241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4736241</ieee_id><sourcerecordid>4736241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-b86e151b8fe30606e70c2b4c31809e90f9c7aa4048e22b2ae1e52671d2dc2b5c3</originalsourceid><addsrcrecordid>eNpVkEtLw0AUhcdHwVi7F9zkD6TeezPPZSk-CgUFFZdlktzUkUlSklaov96K3bg6i-98Z3GEuEaYIoK7fX-ZTwnATqXJNUk8ERNnLEqSkgxYfSoSVMpmMgd19o8Zdy4SsA4zc1BHIrEm00qipQtxOQyfAGgVUiJmz773MXJMh9Dsot-Grk27Ot1-cLqOXeFjyptQcRO62K33v2j2FXybLto67rj99ldiVPs48OSYY_F2f_c6f8yWTw-L-WyZlUS0zQqrGRUWtuYcNGg2UFIhyxwtOHZQu9J4L0FaJirIM7IibbCi6tBTZT4WN3-7gZlXmz40vt-vjs_kP2dGUAA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parallel simulation of the global epidemiology of Avian Influenza</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rao, Dhananjai M. ; Chernyakhovsky, Alexander</creator><creatorcontrib>Rao, Dhananjai M. ; Chernyakhovsky, Alexander</creatorcontrib><description>SEARUMS is an eco-modeling, bio-simulation, and analysis environment to study the global epidemiology of Avian Influenza. Originally developed in Java, SEARUMS enables comprehensive epidemiological analysis, forecast epicenters, and time lines of epidemics for prophylaxis; thereby mitigating disease outbreaks. However, SEARUMS-based simulations were time consuming due to the size and complexity of the models. In an endeavor to reduce time for simulation, we have redesigned the infrastructure of SEARUMS to operate as a time warp synchronized, parallel and distributed simulation. This paper presents our parallelization efforts along with empirical evaluation of various design alternatives that were explored to identify the ideal parallel simulation configuration. Our experiments indicate that the redesigned environment called SEARUMS++ achieves good scalability and performance, thus meeting a mission-critical objective.</description><identifier>ISSN: 0891-7736</identifier><identifier>ISBN: 9781424427079</identifier><identifier>ISBN: 142442707X</identifier><identifier>EISSN: 1558-4305</identifier><identifier>EISBN: 9781424427086</identifier><identifier>EISBN: 1424427088</identifier><identifier>DOI: 10.1109/WSC.2008.4736241</identifier><identifier>LCCN: 87-654182</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Biological system modeling ; Diseases ; Humans ; Influenza ; Java ; Markov processes ; Mathematical model ; Scalability ; Time warp simulation</subject><ispartof>2008 Winter Simulation Conference, 2008, p.1583-1591</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-b86e151b8fe30606e70c2b4c31809e90f9c7aa4048e22b2ae1e52671d2dc2b5c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4736241$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4736241$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rao, Dhananjai M.</creatorcontrib><creatorcontrib>Chernyakhovsky, Alexander</creatorcontrib><title>Parallel simulation of the global epidemiology of Avian Influenza</title><title>2008 Winter Simulation Conference</title><addtitle>WSC</addtitle><description>SEARUMS is an eco-modeling, bio-simulation, and analysis environment to study the global epidemiology of Avian Influenza. Originally developed in Java, SEARUMS enables comprehensive epidemiological analysis, forecast epicenters, and time lines of epidemics for prophylaxis; thereby mitigating disease outbreaks. However, SEARUMS-based simulations were time consuming due to the size and complexity of the models. In an endeavor to reduce time for simulation, we have redesigned the infrastructure of SEARUMS to operate as a time warp synchronized, parallel and distributed simulation. This paper presents our parallelization efforts along with empirical evaluation of various design alternatives that were explored to identify the ideal parallel simulation configuration. Our experiments indicate that the redesigned environment called SEARUMS++ achieves good scalability and performance, thus meeting a mission-critical objective.</description><subject>Analytical models</subject><subject>Biological system modeling</subject><subject>Diseases</subject><subject>Humans</subject><subject>Influenza</subject><subject>Java</subject><subject>Markov processes</subject><subject>Mathematical model</subject><subject>Scalability</subject><subject>Time warp simulation</subject><issn>0891-7736</issn><issn>1558-4305</issn><isbn>9781424427079</isbn><isbn>142442707X</isbn><isbn>9781424427086</isbn><isbn>1424427088</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkEtLw0AUhcdHwVi7F9zkD6TeezPPZSk-CgUFFZdlktzUkUlSklaov96K3bg6i-98Z3GEuEaYIoK7fX-ZTwnATqXJNUk8ERNnLEqSkgxYfSoSVMpmMgd19o8Zdy4SsA4zc1BHIrEm00qipQtxOQyfAGgVUiJmz773MXJMh9Dsot-Grk27Ot1-cLqOXeFjyptQcRO62K33v2j2FXybLto67rj99ldiVPs48OSYY_F2f_c6f8yWTw-L-WyZlUS0zQqrGRUWtuYcNGg2UFIhyxwtOHZQu9J4L0FaJirIM7IibbCi6tBTZT4WN3-7gZlXmz40vt-vjs_kP2dGUAA</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Rao, Dhananjai M.</creator><creator>Chernyakhovsky, Alexander</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200812</creationdate><title>Parallel simulation of the global epidemiology of Avian Influenza</title><author>Rao, Dhananjai M. ; Chernyakhovsky, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-b86e151b8fe30606e70c2b4c31809e90f9c7aa4048e22b2ae1e52671d2dc2b5c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytical models</topic><topic>Biological system modeling</topic><topic>Diseases</topic><topic>Humans</topic><topic>Influenza</topic><topic>Java</topic><topic>Markov processes</topic><topic>Mathematical model</topic><topic>Scalability</topic><topic>Time warp simulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Rao, Dhananjai M.</creatorcontrib><creatorcontrib>Chernyakhovsky, Alexander</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rao, Dhananjai M.</au><au>Chernyakhovsky, Alexander</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parallel simulation of the global epidemiology of Avian Influenza</atitle><btitle>2008 Winter Simulation Conference</btitle><stitle>WSC</stitle><date>2008-12</date><risdate>2008</risdate><spage>1583</spage><epage>1591</epage><pages>1583-1591</pages><issn>0891-7736</issn><eissn>1558-4305</eissn><isbn>9781424427079</isbn><isbn>142442707X</isbn><eisbn>9781424427086</eisbn><eisbn>1424427088</eisbn><abstract>SEARUMS is an eco-modeling, bio-simulation, and analysis environment to study the global epidemiology of Avian Influenza. Originally developed in Java, SEARUMS enables comprehensive epidemiological analysis, forecast epicenters, and time lines of epidemics for prophylaxis; thereby mitigating disease outbreaks. However, SEARUMS-based simulations were time consuming due to the size and complexity of the models. In an endeavor to reduce time for simulation, we have redesigned the infrastructure of SEARUMS to operate as a time warp synchronized, parallel and distributed simulation. This paper presents our parallelization efforts along with empirical evaluation of various design alternatives that were explored to identify the ideal parallel simulation configuration. Our experiments indicate that the redesigned environment called SEARUMS++ achieves good scalability and performance, thus meeting a mission-critical objective.</abstract><pub>IEEE</pub><doi>10.1109/WSC.2008.4736241</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0891-7736 |
ispartof | 2008 Winter Simulation Conference, 2008, p.1583-1591 |
issn | 0891-7736 1558-4305 |
language | eng |
recordid | cdi_ieee_primary_4736241 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Analytical models Biological system modeling Diseases Humans Influenza Java Markov processes Mathematical model Scalability Time warp simulation |
title | Parallel simulation of the global epidemiology of Avian Influenza |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parallel%20simulation%20of%20the%20global%20epidemiology%20of%20Avian%20Influenza&rft.btitle=2008%20Winter%20Simulation%20Conference&rft.au=Rao,%20Dhananjai%20M.&rft.date=2008-12&rft.spage=1583&rft.epage=1591&rft.pages=1583-1591&rft.issn=0891-7736&rft.eissn=1558-4305&rft.isbn=9781424427079&rft.isbn_list=142442707X&rft_id=info:doi/10.1109/WSC.2008.4736241&rft_dat=%3Cieee_6IE%3E4736241%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424427086&rft.eisbn_list=1424427088&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4736241&rfr_iscdi=true |