Kernel and Feature Selection for Visible and Infrared based Obstacle Recognition

In this article we propose a fusion model at data-level based on a linear combination of kernels. These kernels functions will be evaluated on disjoint entries, on the signature acquired from visible respective infrared spectrum. Therefore, we have to choose the proper numeric signature for the visi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Apatean, Anca, Rogozan, Alexandrina, Bensrhair, Abdelaziz
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1135
container_issue
container_start_page 1130
container_title
container_volume
creator Apatean, Anca
Rogozan, Alexandrina
Bensrhair, Abdelaziz
description In this article we propose a fusion model at data-level based on a linear combination of kernels. These kernels functions will be evaluated on disjoint entries, on the signature acquired from visible respective infrared spectrum. Therefore, we have to choose the proper numeric signature for the visible and for the infrared images. In order to retain just the best suited features, different feature extraction and feature selection algorithms have been investigated. In this way, important information can be achieved in a small number of coefficients, implying thus a significant reduction of the computation time. Our purpose is to develop the obstacle recognition module and to examine if a visible-infrared fusion is efficient for this task.
doi_str_mv 10.1109/ITSC.2008.4732711
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4732711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4732711</ieee_id><sourcerecordid>4732711</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-78f262b325522f352cb412f0e8dffa1db9604b06181b13ee5cf129e58b36d2473</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhM1PJUrJAyAueYEU79pO7COqKERUKqKFa2Una2QUEuSEA29PChUSl1lpvp05DGOXwOcA3FyX281ijpzruSwEFgBHLDGFBolSIgDCMZsiKJFxDsXJPwby9I9xM2Hn-xrD0eT6jCV9_zbaXCoxBqbs8YFiS01q2zpdkh0-I6UbaqgaQtemvovpS-iDa-jno2x9tJHq1Nl-1LXrB1uN7Imq7rUN-8wFm3jb9JQc7ow9L2-3i_tstb4rFzerLEChhqzQHnN0ApVC9EJh5SSg56Rr7y3UzuRcOp6DBgeCSFUe0JDSTuQ1jpvM2NVvbyCi3UcM7zZ-7Q5jiW-joVWP</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Kernel and Feature Selection for Visible and Infrared based Obstacle Recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Apatean, Anca ; Rogozan, Alexandrina ; Bensrhair, Abdelaziz</creator><creatorcontrib>Apatean, Anca ; Rogozan, Alexandrina ; Bensrhair, Abdelaziz</creatorcontrib><description>In this article we propose a fusion model at data-level based on a linear combination of kernels. These kernels functions will be evaluated on disjoint entries, on the signature acquired from visible respective infrared spectrum. Therefore, we have to choose the proper numeric signature for the visible and for the infrared images. In order to retain just the best suited features, different feature extraction and feature selection algorithms have been investigated. In this way, important information can be achieved in a small number of coefficients, implying thus a significant reduction of the computation time. Our purpose is to develop the obstacle recognition module and to examine if a visible-infrared fusion is efficient for this task.</description><identifier>ISSN: 2153-0009</identifier><identifier>ISBN: 9781424421114</identifier><identifier>ISBN: 142442111X</identifier><identifier>EISSN: 2153-0017</identifier><identifier>EISBN: 9781424421121</identifier><identifier>EISBN: 1424421128</identifier><identifier>DOI: 10.1109/ITSC.2008.4732711</identifier><identifier>LCCN: 2008902968</identifier><language>eng</language><publisher>IEEE</publisher><subject>Feature extraction ; Infrared spectra ; Kernel ; Laser radar ; Object detection ; Radar detection ; Real time systems ; Roads ; Support vector machine classification ; Support vector machines</subject><ispartof>2008 11th International IEEE Conference on Intelligent Transportation Systems, 2008, p.1130-1135</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4732711$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4732711$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Apatean, Anca</creatorcontrib><creatorcontrib>Rogozan, Alexandrina</creatorcontrib><creatorcontrib>Bensrhair, Abdelaziz</creatorcontrib><title>Kernel and Feature Selection for Visible and Infrared based Obstacle Recognition</title><title>2008 11th International IEEE Conference on Intelligent Transportation Systems</title><addtitle>ITSC</addtitle><description>In this article we propose a fusion model at data-level based on a linear combination of kernels. These kernels functions will be evaluated on disjoint entries, on the signature acquired from visible respective infrared spectrum. Therefore, we have to choose the proper numeric signature for the visible and for the infrared images. In order to retain just the best suited features, different feature extraction and feature selection algorithms have been investigated. In this way, important information can be achieved in a small number of coefficients, implying thus a significant reduction of the computation time. Our purpose is to develop the obstacle recognition module and to examine if a visible-infrared fusion is efficient for this task.</description><subject>Feature extraction</subject><subject>Infrared spectra</subject><subject>Kernel</subject><subject>Laser radar</subject><subject>Object detection</subject><subject>Radar detection</subject><subject>Real time systems</subject><subject>Roads</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><issn>2153-0009</issn><issn>2153-0017</issn><isbn>9781424421114</isbn><isbn>142442111X</isbn><isbn>9781424421121</isbn><isbn>1424421128</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1OwzAQhM1PJUrJAyAueYEU79pO7COqKERUKqKFa2Una2QUEuSEA29PChUSl1lpvp05DGOXwOcA3FyX281ijpzruSwEFgBHLDGFBolSIgDCMZsiKJFxDsXJPwby9I9xM2Hn-xrD0eT6jCV9_zbaXCoxBqbs8YFiS01q2zpdkh0-I6UbaqgaQtemvovpS-iDa-jno2x9tJHq1Nl-1LXrB1uN7Imq7rUN-8wFm3jb9JQc7ow9L2-3i_tstb4rFzerLEChhqzQHnN0ApVC9EJh5SSg56Rr7y3UzuRcOp6DBgeCSFUe0JDSTuQ1jpvM2NVvbyCi3UcM7zZ-7Q5jiW-joVWP</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Apatean, Anca</creator><creator>Rogozan, Alexandrina</creator><creator>Bensrhair, Abdelaziz</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200810</creationdate><title>Kernel and Feature Selection for Visible and Infrared based Obstacle Recognition</title><author>Apatean, Anca ; Rogozan, Alexandrina ; Bensrhair, Abdelaziz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-78f262b325522f352cb412f0e8dffa1db9604b06181b13ee5cf129e58b36d2473</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Feature extraction</topic><topic>Infrared spectra</topic><topic>Kernel</topic><topic>Laser radar</topic><topic>Object detection</topic><topic>Radar detection</topic><topic>Real time systems</topic><topic>Roads</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Apatean, Anca</creatorcontrib><creatorcontrib>Rogozan, Alexandrina</creatorcontrib><creatorcontrib>Bensrhair, Abdelaziz</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Apatean, Anca</au><au>Rogozan, Alexandrina</au><au>Bensrhair, Abdelaziz</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Kernel and Feature Selection for Visible and Infrared based Obstacle Recognition</atitle><btitle>2008 11th International IEEE Conference on Intelligent Transportation Systems</btitle><stitle>ITSC</stitle><date>2008-10</date><risdate>2008</risdate><spage>1130</spage><epage>1135</epage><pages>1130-1135</pages><issn>2153-0009</issn><eissn>2153-0017</eissn><isbn>9781424421114</isbn><isbn>142442111X</isbn><eisbn>9781424421121</eisbn><eisbn>1424421128</eisbn><abstract>In this article we propose a fusion model at data-level based on a linear combination of kernels. These kernels functions will be evaluated on disjoint entries, on the signature acquired from visible respective infrared spectrum. Therefore, we have to choose the proper numeric signature for the visible and for the infrared images. In order to retain just the best suited features, different feature extraction and feature selection algorithms have been investigated. In this way, important information can be achieved in a small number of coefficients, implying thus a significant reduction of the computation time. Our purpose is to develop the obstacle recognition module and to examine if a visible-infrared fusion is efficient for this task.</abstract><pub>IEEE</pub><doi>10.1109/ITSC.2008.4732711</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0009
ispartof 2008 11th International IEEE Conference on Intelligent Transportation Systems, 2008, p.1130-1135
issn 2153-0009
2153-0017
language eng
recordid cdi_ieee_primary_4732711
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Feature extraction
Infrared spectra
Kernel
Laser radar
Object detection
Radar detection
Real time systems
Roads
Support vector machine classification
Support vector machines
title Kernel and Feature Selection for Visible and Infrared based Obstacle Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A33%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Kernel%20and%20Feature%20Selection%20for%20Visible%20and%20Infrared%20based%20Obstacle%20Recognition&rft.btitle=2008%2011th%20International%20IEEE%20Conference%20on%20Intelligent%20Transportation%20Systems&rft.au=Apatean,%20Anca&rft.date=2008-10&rft.spage=1130&rft.epage=1135&rft.pages=1130-1135&rft.issn=2153-0009&rft.eissn=2153-0017&rft.isbn=9781424421114&rft.isbn_list=142442111X&rft_id=info:doi/10.1109/ITSC.2008.4732711&rft_dat=%3Cieee_6IE%3E4732711%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424421121&rft.eisbn_list=1424421128&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4732711&rfr_iscdi=true