Thresholding approaches with interval-valued fuzzy sets to image segmentation

Thresholding approaches are fundamental and important techniques in image segmentation. There exist lots of integrated techniques of thresholding methods with fuzzy sets theory. The fuzzy compactness and fuzzy divergence are powerful tools in dealing with vague and imprecise data, and are widely app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tingquan Deng, Peipei Wang, Yuling Mei, Wenjie Liu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1064
container_issue
container_start_page 1059
container_title
container_volume 1
creator Tingquan Deng
Peipei Wang
Yuling Mei
Wenjie Liu
description Thresholding approaches are fundamental and important techniques in image segmentation. There exist lots of integrated techniques of thresholding methods with fuzzy sets theory. The fuzzy compactness and fuzzy divergence are powerful tools in dealing with vague and imprecise data, and are widely applied to thresholding segmentation for images. This paper extends the two kinds of fuzzy measures to interval-valued fuzzy sets to eliminate uncertain assignments of membership degrees of pixels in images. Two thresholding techniques are proposed for image segmentation. The affinity characteristics of pixels in images are sufficiently considered in the new techniques. The experimental results show that the selection of initial membership functions brings little impact on thresholding segmentation of images.
doi_str_mv 10.1109/ISKE.2008.4731086
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4731086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4731086</ieee_id><sourcerecordid>4731086</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d8ce26992e20324ca8287d6a756a17b54e276e91302e8d2a174be1094414b8903</originalsourceid><addsrcrecordid>eNo1UNFKwzAUjchAN_sB4kt-oDU3SZvkUcbU4cQH5_NI27s20rWjyZTt6404D1wu53C5nHMIuQWWATBzv3x_WWScMZ1JJYDp4oJMQXIpORilLklilP7nBUzI9PfWMOAarkji_SeLECaX0lyT13U7om-HrnZ9Q-1-Pw62atHTbxda6vqA45ft0jgHrOn2cDodqcfgaRio29kGI2t22Acb3NDfkMnWdh6T856Rj8fFev6crt6elvOHVepA5SGtdYW8MIYjZ4LLymquVV1YlRcWVJlL5KpAA4Jx1DWPmiwxRpcSZBmjiBm5-_vrEHGzH6OT8bg51yF-ADxUUSY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Thresholding approaches with interval-valued fuzzy sets to image segmentation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tingquan Deng ; Peipei Wang ; Yuling Mei ; Wenjie Liu</creator><creatorcontrib>Tingquan Deng ; Peipei Wang ; Yuling Mei ; Wenjie Liu</creatorcontrib><description>Thresholding approaches are fundamental and important techniques in image segmentation. There exist lots of integrated techniques of thresholding methods with fuzzy sets theory. The fuzzy compactness and fuzzy divergence are powerful tools in dealing with vague and imprecise data, and are widely applied to thresholding segmentation for images. This paper extends the two kinds of fuzzy measures to interval-valued fuzzy sets to eliminate uncertain assignments of membership degrees of pixels in images. Two thresholding techniques are proposed for image segmentation. The affinity characteristics of pixels in images are sufficiently considered in the new techniques. The experimental results show that the selection of initial membership functions brings little impact on thresholding segmentation of images.</description><identifier>ISBN: 9781424421961</identifier><identifier>ISBN: 1424421969</identifier><identifier>EISBN: 1424421977</identifier><identifier>EISBN: 9781424421978</identifier><identifier>DOI: 10.1109/ISKE.2008.4731086</identifier><identifier>LCCN: 2008901281</identifier><language>eng</language><publisher>IEEE</publisher><subject>Educational institutions ; Fuzzy set theory ; Fuzzy sets ; Image analysis ; Image segmentation ; Intelligent systems ; Knowledge engineering ; Pixel ; Power engineering and energy ; Robustness</subject><ispartof>2008 3rd International Conference on Intelligent System and Knowledge Engineering, 2008, Vol.1, p.1059-1064</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4731086$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4731086$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tingquan Deng</creatorcontrib><creatorcontrib>Peipei Wang</creatorcontrib><creatorcontrib>Yuling Mei</creatorcontrib><creatorcontrib>Wenjie Liu</creatorcontrib><title>Thresholding approaches with interval-valued fuzzy sets to image segmentation</title><title>2008 3rd International Conference on Intelligent System and Knowledge Engineering</title><addtitle>ISKE</addtitle><description>Thresholding approaches are fundamental and important techniques in image segmentation. There exist lots of integrated techniques of thresholding methods with fuzzy sets theory. The fuzzy compactness and fuzzy divergence are powerful tools in dealing with vague and imprecise data, and are widely applied to thresholding segmentation for images. This paper extends the two kinds of fuzzy measures to interval-valued fuzzy sets to eliminate uncertain assignments of membership degrees of pixels in images. Two thresholding techniques are proposed for image segmentation. The affinity characteristics of pixels in images are sufficiently considered in the new techniques. The experimental results show that the selection of initial membership functions brings little impact on thresholding segmentation of images.</description><subject>Educational institutions</subject><subject>Fuzzy set theory</subject><subject>Fuzzy sets</subject><subject>Image analysis</subject><subject>Image segmentation</subject><subject>Intelligent systems</subject><subject>Knowledge engineering</subject><subject>Pixel</subject><subject>Power engineering and energy</subject><subject>Robustness</subject><isbn>9781424421961</isbn><isbn>1424421969</isbn><isbn>1424421977</isbn><isbn>9781424421978</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UNFKwzAUjchAN_sB4kt-oDU3SZvkUcbU4cQH5_NI27s20rWjyZTt6404D1wu53C5nHMIuQWWATBzv3x_WWScMZ1JJYDp4oJMQXIpORilLklilP7nBUzI9PfWMOAarkji_SeLECaX0lyT13U7om-HrnZ9Q-1-Pw62atHTbxda6vqA45ft0jgHrOn2cDodqcfgaRio29kGI2t22Acb3NDfkMnWdh6T856Rj8fFev6crt6elvOHVepA5SGtdYW8MIYjZ4LLymquVV1YlRcWVJlL5KpAA4Jx1DWPmiwxRpcSZBmjiBm5-_vrEHGzH6OT8bg51yF-ADxUUSY</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>Tingquan Deng</creator><creator>Peipei Wang</creator><creator>Yuling Mei</creator><creator>Wenjie Liu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200811</creationdate><title>Thresholding approaches with interval-valued fuzzy sets to image segmentation</title><author>Tingquan Deng ; Peipei Wang ; Yuling Mei ; Wenjie Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d8ce26992e20324ca8287d6a756a17b54e276e91302e8d2a174be1094414b8903</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Educational institutions</topic><topic>Fuzzy set theory</topic><topic>Fuzzy sets</topic><topic>Image analysis</topic><topic>Image segmentation</topic><topic>Intelligent systems</topic><topic>Knowledge engineering</topic><topic>Pixel</topic><topic>Power engineering and energy</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Tingquan Deng</creatorcontrib><creatorcontrib>Peipei Wang</creatorcontrib><creatorcontrib>Yuling Mei</creatorcontrib><creatorcontrib>Wenjie Liu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tingquan Deng</au><au>Peipei Wang</au><au>Yuling Mei</au><au>Wenjie Liu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Thresholding approaches with interval-valued fuzzy sets to image segmentation</atitle><btitle>2008 3rd International Conference on Intelligent System and Knowledge Engineering</btitle><stitle>ISKE</stitle><date>2008-11</date><risdate>2008</risdate><volume>1</volume><spage>1059</spage><epage>1064</epage><pages>1059-1064</pages><isbn>9781424421961</isbn><isbn>1424421969</isbn><eisbn>1424421977</eisbn><eisbn>9781424421978</eisbn><abstract>Thresholding approaches are fundamental and important techniques in image segmentation. There exist lots of integrated techniques of thresholding methods with fuzzy sets theory. The fuzzy compactness and fuzzy divergence are powerful tools in dealing with vague and imprecise data, and are widely applied to thresholding segmentation for images. This paper extends the two kinds of fuzzy measures to interval-valued fuzzy sets to eliminate uncertain assignments of membership degrees of pixels in images. Two thresholding techniques are proposed for image segmentation. The affinity characteristics of pixels in images are sufficiently considered in the new techniques. The experimental results show that the selection of initial membership functions brings little impact on thresholding segmentation of images.</abstract><pub>IEEE</pub><doi>10.1109/ISKE.2008.4731086</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424421961
ispartof 2008 3rd International Conference on Intelligent System and Knowledge Engineering, 2008, Vol.1, p.1059-1064
issn
language eng
recordid cdi_ieee_primary_4731086
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Educational institutions
Fuzzy set theory
Fuzzy sets
Image analysis
Image segmentation
Intelligent systems
Knowledge engineering
Pixel
Power engineering and energy
Robustness
title Thresholding approaches with interval-valued fuzzy sets to image segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A01%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Thresholding%20approaches%20with%20interval-valued%20fuzzy%20sets%20to%20image%20segmentation&rft.btitle=2008%203rd%20International%20Conference%20on%20Intelligent%20System%20and%20Knowledge%20Engineering&rft.au=Tingquan%20Deng&rft.date=2008-11&rft.volume=1&rft.spage=1059&rft.epage=1064&rft.pages=1059-1064&rft.isbn=9781424421961&rft.isbn_list=1424421969&rft_id=info:doi/10.1109/ISKE.2008.4731086&rft_dat=%3Cieee_6IE%3E4731086%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424421977&rft.eisbn_list=9781424421978&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4731086&rfr_iscdi=true