Learning and Classification of Trajectories in Dynamic Scenes: A General Framework for Live Video Analysis

This paper presents a general framework for live video analysis. The activities of surveillance subjects are described using a spatio-temporal vocabulary learned from recurrent motion patterns. The repetitive nature of object trajectories is used to build a topographical scene description where node...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Morris, B.T., Trivedi, M.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 161
container_issue
container_start_page 154
container_title
container_volume
creator Morris, B.T.
Trivedi, M.M.
description This paper presents a general framework for live video analysis. The activities of surveillance subjects are described using a spatio-temporal vocabulary learned from recurrent motion patterns. The repetitive nature of object trajectories is used to build a topographical scene description where nodes are points of interest (POT) and the edges correspond to activity paths (AP). The POI are learned through as a mixture of Gaussians and AP by clustering trajectories. The paths are probabilistically represented by hidden Markov models and adapt to temporal variations using online maximum likelihood regression (MLLR) and through a periodic batch update. Using the scene graph, new trajectories can be analyzed in online fashion to categorize past and present activity, predict future behavior, and detect abnormalities.
doi_str_mv 10.1109/AVSS.2008.65
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4730406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4730406</ieee_id><sourcerecordid>4730406</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-538ce46b07767e144a48160188242625e5edf7fdefced2754d23271ae67007d13</originalsourceid><addsrcrecordid>eNotjMFKAzEURSNS0Nbu3LnJD7S-vGSSjLuhahUGXLR0W-LkRVKnGUmK0r-3Uu_mnguHy9itgLkQUN83m9VqjgB2rqsLNq2NBaPrSipEuGTj85BK2BEb_2k11srqKzYtZQenVGgQ8ZrtWnI5xfTBXfJ80btSYoidO8Qh8SHwdXY76g5DjlR4TPzxmNw-dnzVUaLywBu-PEF2PX_Obk8_Q_7kYci8jd_EN9HTwJvk-mOJ5YaNgusLTf97wtbPT-vFy6x9W74umnYWazjMKmk7UvodjNGGhFJOWaFBWIsKNVZUkQ8meAodeTSV8ijRCEfaABgv5ITdnW8jEW2_cty7fNwqI0GBlr_CaVky</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning and Classification of Trajectories in Dynamic Scenes: A General Framework for Live Video Analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Morris, B.T. ; Trivedi, M.M.</creator><creatorcontrib>Morris, B.T. ; Trivedi, M.M.</creatorcontrib><description>This paper presents a general framework for live video analysis. The activities of surveillance subjects are described using a spatio-temporal vocabulary learned from recurrent motion patterns. The repetitive nature of object trajectories is used to build a topographical scene description where nodes are points of interest (POT) and the edges correspond to activity paths (AP). The POI are learned through as a mixture of Gaussians and AP by clustering trajectories. The paths are probabilistically represented by hidden Markov models and adapt to temporal variations using online maximum likelihood regression (MLLR) and through a periodic batch update. Using the scene graph, new trajectories can be analyzed in online fashion to categorize past and present activity, predict future behavior, and detect abnormalities.</description><identifier>ISBN: 0769533418</identifier><identifier>ISBN: 9780769533414</identifier><identifier>EISBN: 9780769534220</identifier><identifier>EISBN: 0769534228</identifier><identifier>DOI: 10.1109/AVSS.2008.65</identifier><identifier>LCCN: 2008929486</identifier><language>eng</language><publisher>IEEE</publisher><subject>abnormality detection ; activity prediction ; Cameras ; Computer vision ; Laboratories ; Layout ; live activity analysis ; Monitoring ; Robot vision systems ; Signal analysis ; Surveillance ; trajectory learning ; Video compression ; Videoconference</subject><ispartof>2008 IEEE Fifth International Conference on Advanced Video and Signal Based Surveillance, 2008, p.154-161</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4730406$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4730406$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Morris, B.T.</creatorcontrib><creatorcontrib>Trivedi, M.M.</creatorcontrib><title>Learning and Classification of Trajectories in Dynamic Scenes: A General Framework for Live Video Analysis</title><title>2008 IEEE Fifth International Conference on Advanced Video and Signal Based Surveillance</title><addtitle>avss</addtitle><description>This paper presents a general framework for live video analysis. The activities of surveillance subjects are described using a spatio-temporal vocabulary learned from recurrent motion patterns. The repetitive nature of object trajectories is used to build a topographical scene description where nodes are points of interest (POT) and the edges correspond to activity paths (AP). The POI are learned through as a mixture of Gaussians and AP by clustering trajectories. The paths are probabilistically represented by hidden Markov models and adapt to temporal variations using online maximum likelihood regression (MLLR) and through a periodic batch update. Using the scene graph, new trajectories can be analyzed in online fashion to categorize past and present activity, predict future behavior, and detect abnormalities.</description><subject>abnormality detection</subject><subject>activity prediction</subject><subject>Cameras</subject><subject>Computer vision</subject><subject>Laboratories</subject><subject>Layout</subject><subject>live activity analysis</subject><subject>Monitoring</subject><subject>Robot vision systems</subject><subject>Signal analysis</subject><subject>Surveillance</subject><subject>trajectory learning</subject><subject>Video compression</subject><subject>Videoconference</subject><isbn>0769533418</isbn><isbn>9780769533414</isbn><isbn>9780769534220</isbn><isbn>0769534228</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMFKAzEURSNS0Nbu3LnJD7S-vGSSjLuhahUGXLR0W-LkRVKnGUmK0r-3Uu_mnguHy9itgLkQUN83m9VqjgB2rqsLNq2NBaPrSipEuGTj85BK2BEb_2k11srqKzYtZQenVGgQ8ZrtWnI5xfTBXfJ80btSYoidO8Qh8SHwdXY76g5DjlR4TPzxmNw-dnzVUaLywBu-PEF2PX_Obk8_Q_7kYci8jd_EN9HTwJvk-mOJ5YaNgusLTf97wtbPT-vFy6x9W74umnYWazjMKmk7UvodjNGGhFJOWaFBWIsKNVZUkQ8meAodeTSV8ijRCEfaABgv5ITdnW8jEW2_cty7fNwqI0GBlr_CaVky</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Morris, B.T.</creator><creator>Trivedi, M.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>Learning and Classification of Trajectories in Dynamic Scenes: A General Framework for Live Video Analysis</title><author>Morris, B.T. ; Trivedi, M.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-538ce46b07767e144a48160188242625e5edf7fdefced2754d23271ae67007d13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>abnormality detection</topic><topic>activity prediction</topic><topic>Cameras</topic><topic>Computer vision</topic><topic>Laboratories</topic><topic>Layout</topic><topic>live activity analysis</topic><topic>Monitoring</topic><topic>Robot vision systems</topic><topic>Signal analysis</topic><topic>Surveillance</topic><topic>trajectory learning</topic><topic>Video compression</topic><topic>Videoconference</topic><toplevel>online_resources</toplevel><creatorcontrib>Morris, B.T.</creatorcontrib><creatorcontrib>Trivedi, M.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Morris, B.T.</au><au>Trivedi, M.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning and Classification of Trajectories in Dynamic Scenes: A General Framework for Live Video Analysis</atitle><btitle>2008 IEEE Fifth International Conference on Advanced Video and Signal Based Surveillance</btitle><stitle>avss</stitle><date>2008-09</date><risdate>2008</risdate><spage>154</spage><epage>161</epage><pages>154-161</pages><isbn>0769533418</isbn><isbn>9780769533414</isbn><eisbn>9780769534220</eisbn><eisbn>0769534228</eisbn><abstract>This paper presents a general framework for live video analysis. The activities of surveillance subjects are described using a spatio-temporal vocabulary learned from recurrent motion patterns. The repetitive nature of object trajectories is used to build a topographical scene description where nodes are points of interest (POT) and the edges correspond to activity paths (AP). The POI are learned through as a mixture of Gaussians and AP by clustering trajectories. The paths are probabilistically represented by hidden Markov models and adapt to temporal variations using online maximum likelihood regression (MLLR) and through a periodic batch update. Using the scene graph, new trajectories can be analyzed in online fashion to categorize past and present activity, predict future behavior, and detect abnormalities.</abstract><pub>IEEE</pub><doi>10.1109/AVSS.2008.65</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769533418
ispartof 2008 IEEE Fifth International Conference on Advanced Video and Signal Based Surveillance, 2008, p.154-161
issn
language eng
recordid cdi_ieee_primary_4730406
source IEEE Electronic Library (IEL) Conference Proceedings
subjects abnormality detection
activity prediction
Cameras
Computer vision
Laboratories
Layout
live activity analysis
Monitoring
Robot vision systems
Signal analysis
Surveillance
trajectory learning
Video compression
Videoconference
title Learning and Classification of Trajectories in Dynamic Scenes: A General Framework for Live Video Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A56%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20and%20Classification%20of%20Trajectories%20in%20Dynamic%20Scenes:%20A%20General%20Framework%20for%20Live%20Video%20Analysis&rft.btitle=2008%20IEEE%20Fifth%20International%20Conference%20on%20Advanced%20Video%20and%20Signal%20Based%20Surveillance&rft.au=Morris,%20B.T.&rft.date=2008-09&rft.spage=154&rft.epage=161&rft.pages=154-161&rft.isbn=0769533418&rft.isbn_list=9780769533414&rft_id=info:doi/10.1109/AVSS.2008.65&rft_dat=%3Cieee_6IE%3E4730406%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769534220&rft.eisbn_list=0769534228&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4730406&rfr_iscdi=true