Fuzzy Neural Network Approach for Estimating The K-distribution Parameters

This paper provides a novel approach based on neuro-fuzzy inference system for the estimation problem of the K-distributed parameters. The proposed method is based on a network implementation with real weights and the genetic algorithm (GA) tool is applied for an off-line training of the fuzzy-neura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mezache, A., Soltani, F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1338
container_issue
container_start_page 1335
container_title
container_volume
creator Mezache, A.
Soltani, F.
description This paper provides a novel approach based on neuro-fuzzy inference system for the estimation problem of the K-distributed parameters. The proposed method is based on a network implementation with real weights and the genetic algorithm (GA) tool is applied for an off-line training of the fuzzy-neural network (FNN) shape parameter estimator. Moreover, the proposed estimator combines the Raghavan's and ML/MOM (maximum-likelihood and moments) methods and the experimental results are presented to demonstrate the validity of the approach. It is shown that such the FNN estimator is successful with a lower variance of parameter estimates when compared with existing Raghavan's and ML/MOM approaches.
doi_str_mv 10.1109/ICSPC.2007.4728574
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4728574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4728574</ieee_id><sourcerecordid>4728574</sourcerecordid><originalsourceid>FETCH-LOGICAL-i219t-65addcc2c2e0ae1132148a6661ce3090bad75ecfb131ccabe76dfa0c1d2fce5d3</originalsourceid><addsrcrecordid>eNpVkNFKwzAYhSMycMy-gN7kBVrzp0naXo6y6XTowHk90uSvi25rSVNke_pV3I3n5uPA4XA4hNwBSwBY8bAo31dlwhnLEpHxXGbiikRFloPgQgBPlbz-52U-IuPfeMElwA2Juu6LDRJSgFBj8jzvT6cjfcXe692A8NP4bzptW99os6V14-msC26vgzt80vUW6UtsXRe8q_rgmgNdaa_3GNB3t2RU612H0YUT8jGfrcunePn2uCiny9hxKEKspLbWGG44Mo0AKQeRa6UUGExZwSptM4mmriAFY3SFmbK1ZgYsrw1Km07I_V-vQ8RN64dx_ri5vJGeAcuPUnA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fuzzy Neural Network Approach for Estimating The K-distribution Parameters</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mezache, A. ; Soltani, F.</creator><creatorcontrib>Mezache, A. ; Soltani, F.</creatorcontrib><description>This paper provides a novel approach based on neuro-fuzzy inference system for the estimation problem of the K-distributed parameters. The proposed method is based on a network implementation with real weights and the genetic algorithm (GA) tool is applied for an off-line training of the fuzzy-neural network (FNN) shape parameter estimator. Moreover, the proposed estimator combines the Raghavan's and ML/MOM (maximum-likelihood and moments) methods and the experimental results are presented to demonstrate the validity of the approach. It is shown that such the FNN estimator is successful with a lower variance of parameter estimates when compared with existing Raghavan's and ML/MOM approaches.</description><identifier>ISBN: 9781424412358</identifier><identifier>ISBN: 1424412358</identifier><identifier>EISBN: 9781424412365</identifier><identifier>EISBN: 1424412366</identifier><identifier>DOI: 10.1109/ICSPC.2007.4728574</identifier><identifier>LCCN: 200792511</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clutter ; Fuzzy control ; Fuzzy neural networks ; Genetic algorithms ; K-distribution ; Maximum likelihood estimation ; Message-oriented middleware ; Parameter estimation ; Shape ; shape parameter ; Signal processing ; Statistics</subject><ispartof>2007 IEEE International Conference on Signal Processing and Communications, 2007, p.1335-1338</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4728574$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4728574$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mezache, A.</creatorcontrib><creatorcontrib>Soltani, F.</creatorcontrib><title>Fuzzy Neural Network Approach for Estimating The K-distribution Parameters</title><title>2007 IEEE International Conference on Signal Processing and Communications</title><addtitle>ICSPC</addtitle><description>This paper provides a novel approach based on neuro-fuzzy inference system for the estimation problem of the K-distributed parameters. The proposed method is based on a network implementation with real weights and the genetic algorithm (GA) tool is applied for an off-line training of the fuzzy-neural network (FNN) shape parameter estimator. Moreover, the proposed estimator combines the Raghavan's and ML/MOM (maximum-likelihood and moments) methods and the experimental results are presented to demonstrate the validity of the approach. It is shown that such the FNN estimator is successful with a lower variance of parameter estimates when compared with existing Raghavan's and ML/MOM approaches.</description><subject>Clutter</subject><subject>Fuzzy control</subject><subject>Fuzzy neural networks</subject><subject>Genetic algorithms</subject><subject>K-distribution</subject><subject>Maximum likelihood estimation</subject><subject>Message-oriented middleware</subject><subject>Parameter estimation</subject><subject>Shape</subject><subject>shape parameter</subject><subject>Signal processing</subject><subject>Statistics</subject><isbn>9781424412358</isbn><isbn>1424412358</isbn><isbn>9781424412365</isbn><isbn>1424412366</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkNFKwzAYhSMycMy-gN7kBVrzp0naXo6y6XTowHk90uSvi25rSVNke_pV3I3n5uPA4XA4hNwBSwBY8bAo31dlwhnLEpHxXGbiikRFloPgQgBPlbz-52U-IuPfeMElwA2Juu6LDRJSgFBj8jzvT6cjfcXe692A8NP4bzptW99os6V14-msC26vgzt80vUW6UtsXRe8q_rgmgNdaa_3GNB3t2RU612H0YUT8jGfrcunePn2uCiny9hxKEKspLbWGG44Mo0AKQeRa6UUGExZwSptM4mmriAFY3SFmbK1ZgYsrw1Km07I_V-vQ8RN64dx_ri5vJGeAcuPUnA</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Mezache, A.</creator><creator>Soltani, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20070101</creationdate><title>Fuzzy Neural Network Approach for Estimating The K-distribution Parameters</title><author>Mezache, A. ; Soltani, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i219t-65addcc2c2e0ae1132148a6661ce3090bad75ecfb131ccabe76dfa0c1d2fce5d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Clutter</topic><topic>Fuzzy control</topic><topic>Fuzzy neural networks</topic><topic>Genetic algorithms</topic><topic>K-distribution</topic><topic>Maximum likelihood estimation</topic><topic>Message-oriented middleware</topic><topic>Parameter estimation</topic><topic>Shape</topic><topic>shape parameter</topic><topic>Signal processing</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Mezache, A.</creatorcontrib><creatorcontrib>Soltani, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mezache, A.</au><au>Soltani, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fuzzy Neural Network Approach for Estimating The K-distribution Parameters</atitle><btitle>2007 IEEE International Conference on Signal Processing and Communications</btitle><stitle>ICSPC</stitle><date>2007-01-01</date><risdate>2007</risdate><spage>1335</spage><epage>1338</epage><pages>1335-1338</pages><isbn>9781424412358</isbn><isbn>1424412358</isbn><eisbn>9781424412365</eisbn><eisbn>1424412366</eisbn><abstract>This paper provides a novel approach based on neuro-fuzzy inference system for the estimation problem of the K-distributed parameters. The proposed method is based on a network implementation with real weights and the genetic algorithm (GA) tool is applied for an off-line training of the fuzzy-neural network (FNN) shape parameter estimator. Moreover, the proposed estimator combines the Raghavan's and ML/MOM (maximum-likelihood and moments) methods and the experimental results are presented to demonstrate the validity of the approach. It is shown that such the FNN estimator is successful with a lower variance of parameter estimates when compared with existing Raghavan's and ML/MOM approaches.</abstract><pub>IEEE</pub><doi>10.1109/ICSPC.2007.4728574</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424412358
ispartof 2007 IEEE International Conference on Signal Processing and Communications, 2007, p.1335-1338
issn
language eng
recordid cdi_ieee_primary_4728574
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clutter
Fuzzy control
Fuzzy neural networks
Genetic algorithms
K-distribution
Maximum likelihood estimation
Message-oriented middleware
Parameter estimation
Shape
shape parameter
Signal processing
Statistics
title Fuzzy Neural Network Approach for Estimating The K-distribution Parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A04%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fuzzy%20Neural%20Network%20Approach%20for%20Estimating%20The%20K-distribution%20Parameters&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Signal%20Processing%20and%20Communications&rft.au=Mezache,%20A.&rft.date=2007-01-01&rft.spage=1335&rft.epage=1338&rft.pages=1335-1338&rft.isbn=9781424412358&rft.isbn_list=1424412358&rft_id=info:doi/10.1109/ICSPC.2007.4728574&rft_dat=%3Cieee_6IE%3E4728574%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424412365&rft.eisbn_list=1424412366&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4728574&rfr_iscdi=true