Inferring Sparse Kernel Combinations and Relevance Vectors: An Application to Subcellular Localization of Proteins

In this paper, we introduce two new formulations for multi-class multi-kernel relevance vector machines (m-RVMs) that explicitly lead to sparse solutions, both in samples and in number of kernels. This enables their application to large-scale multi-feature multinomial classification problems where t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Damoulas, T., Ying, Y., Girolami, M.A., Campbell, C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!