Inferring Sparse Kernel Combinations and Relevance Vectors: An Application to Subcellular Localization of Proteins
In this paper, we introduce two new formulations for multi-class multi-kernel relevance vector machines (m-RVMs) that explicitly lead to sparse solutions, both in samples and in number of kernels. This enables their application to large-scale multi-feature multinomial classification problems where t...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we introduce two new formulations for multi-class multi-kernel relevance vector machines (m-RVMs) that explicitly lead to sparse solutions, both in samples and in number of kernels. This enables their application to large-scale multi-feature multinomial classification problems where there is an abundance of training samples, classes and feature spaces. The proposed methods are based on an expectation-maximization (EM) framework employing a multinomial probit likelihood and explicit pruning of non-relevant training samples. We demonstrate the methods on a low-dimensional artificial dataset. We then demonstrate the accuracy and sparsity of the method when applied to the challenging bioinformatics task of predicting protein subcellular localization. |
---|---|
DOI: | 10.1109/ICMLA.2008.124 |