Image Segmentation as Learning on Hypergraphs

In this paper, we propose to use hypergraphs as the model for images and pose image segmentation as a machine learning problem in which some pixels (called seeds) are labeled as the objects and background. Using the seed pixels, our method predicts the labels for all unlabeled pixels. We present the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lei Ding, Yilmaz, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 252
container_issue
container_start_page 247
container_title
container_volume
creator Lei Ding
Yilmaz, A.
description In this paper, we propose to use hypergraphs as the model for images and pose image segmentation as a machine learning problem in which some pixels (called seeds) are labeled as the objects and background. Using the seed pixels, our method predicts the labels for all unlabeled pixels. We present the relations of the proposed method to other hypergraph based learning techniques. We give an adaptive procedure for constructing image hypergraphs and achieve promising results on a real image dataset.
doi_str_mv 10.1109/ICMLA.2008.17
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4724982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4724982</ieee_id><sourcerecordid>4724982</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-112e278d7af98226bd35048d4866fd93dff286abbf5a7234231654acb2c15a573</originalsourceid><addsrcrecordid>eNotjL1OwzAURi2hSqWlIxNLXiDB1_8eqwhopFQM0Lm6qe1gREJkZ-nbEwTD0afzDYeQe6AVALWPTX1s9xWj1FSgb8iGamUlFwsrsvm9LTUS-Jrscv6klIJVGqS5JWUzYO-LN98Pfpxxjt9jgbloPaYxjn2x6OE6-dQnnD7yHVkF_Mp-979bcnp-eq8PZfv60tT7toyg5VwCMM-0cRqDNYypznFJhXHCKBWc5S4EZhR2XZCoGReMg5ICLx27gESp-ZY8_HWj9_48pThgup6FZmLp8R_kvkFc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Image Segmentation as Learning on Hypergraphs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lei Ding ; Yilmaz, A.</creator><creatorcontrib>Lei Ding ; Yilmaz, A.</creatorcontrib><description>In this paper, we propose to use hypergraphs as the model for images and pose image segmentation as a machine learning problem in which some pixels (called seeds) are labeled as the objects and background. Using the seed pixels, our method predicts the labels for all unlabeled pixels. We present the relations of the proposed method to other hypergraph based learning techniques. We give an adaptive procedure for constructing image hypergraphs and achieve promising results on a real image dataset.</description><identifier>ISBN: 0769534953</identifier><identifier>ISBN: 9780769534954</identifier><identifier>DOI: 10.1109/ICMLA.2008.17</identifier><identifier>LCCN: 2008908513</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Computer vision ; Humans ; hypergraphs ; Image segmentation ; Iterative algorithms ; Laplace equations ; Laplacian matrix ; Learning systems ; Machine learning ; Pixel ; State estimation</subject><ispartof>2008 Seventh International Conference on Machine Learning and Applications, 2008, p.247-252</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4724982$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4724982$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lei Ding</creatorcontrib><creatorcontrib>Yilmaz, A.</creatorcontrib><title>Image Segmentation as Learning on Hypergraphs</title><title>2008 Seventh International Conference on Machine Learning and Applications</title><addtitle>ICMLA</addtitle><description>In this paper, we propose to use hypergraphs as the model for images and pose image segmentation as a machine learning problem in which some pixels (called seeds) are labeled as the objects and background. Using the seed pixels, our method predicts the labels for all unlabeled pixels. We present the relations of the proposed method to other hypergraph based learning techniques. We give an adaptive procedure for constructing image hypergraphs and achieve promising results on a real image dataset.</description><subject>Application software</subject><subject>Computer vision</subject><subject>Humans</subject><subject>hypergraphs</subject><subject>Image segmentation</subject><subject>Iterative algorithms</subject><subject>Laplace equations</subject><subject>Laplacian matrix</subject><subject>Learning systems</subject><subject>Machine learning</subject><subject>Pixel</subject><subject>State estimation</subject><isbn>0769534953</isbn><isbn>9780769534954</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjL1OwzAURi2hSqWlIxNLXiDB1_8eqwhopFQM0Lm6qe1gREJkZ-nbEwTD0afzDYeQe6AVALWPTX1s9xWj1FSgb8iGamUlFwsrsvm9LTUS-Jrscv6klIJVGqS5JWUzYO-LN98Pfpxxjt9jgbloPaYxjn2x6OE6-dQnnD7yHVkF_Mp-979bcnp-eq8PZfv60tT7toyg5VwCMM-0cRqDNYypznFJhXHCKBWc5S4EZhR2XZCoGReMg5ICLx27gESp-ZY8_HWj9_48pThgup6FZmLp8R_kvkFc</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Lei Ding</creator><creator>Yilmaz, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>Image Segmentation as Learning on Hypergraphs</title><author>Lei Ding ; Yilmaz, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-112e278d7af98226bd35048d4866fd93dff286abbf5a7234231654acb2c15a573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Application software</topic><topic>Computer vision</topic><topic>Humans</topic><topic>hypergraphs</topic><topic>Image segmentation</topic><topic>Iterative algorithms</topic><topic>Laplace equations</topic><topic>Laplacian matrix</topic><topic>Learning systems</topic><topic>Machine learning</topic><topic>Pixel</topic><topic>State estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Lei Ding</creatorcontrib><creatorcontrib>Yilmaz, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lei Ding</au><au>Yilmaz, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Image Segmentation as Learning on Hypergraphs</atitle><btitle>2008 Seventh International Conference on Machine Learning and Applications</btitle><stitle>ICMLA</stitle><date>2008-12</date><risdate>2008</risdate><spage>247</spage><epage>252</epage><pages>247-252</pages><isbn>0769534953</isbn><isbn>9780769534954</isbn><abstract>In this paper, we propose to use hypergraphs as the model for images and pose image segmentation as a machine learning problem in which some pixels (called seeds) are labeled as the objects and background. Using the seed pixels, our method predicts the labels for all unlabeled pixels. We present the relations of the proposed method to other hypergraph based learning techniques. We give an adaptive procedure for constructing image hypergraphs and achieve promising results on a real image dataset.</abstract><pub>IEEE</pub><doi>10.1109/ICMLA.2008.17</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769534953
ispartof 2008 Seventh International Conference on Machine Learning and Applications, 2008, p.247-252
issn
language eng
recordid cdi_ieee_primary_4724982
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Computer vision
Humans
hypergraphs
Image segmentation
Iterative algorithms
Laplace equations
Laplacian matrix
Learning systems
Machine learning
Pixel
State estimation
title Image Segmentation as Learning on Hypergraphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T11%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Image%20Segmentation%20as%20Learning%20on%20Hypergraphs&rft.btitle=2008%20Seventh%20International%20Conference%20on%20Machine%20Learning%20and%20Applications&rft.au=Lei%20Ding&rft.date=2008-12&rft.spage=247&rft.epage=252&rft.pages=247-252&rft.isbn=0769534953&rft.isbn_list=9780769534954&rft_id=info:doi/10.1109/ICMLA.2008.17&rft_dat=%3Cieee_6IE%3E4724982%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4724982&rfr_iscdi=true