A multi-step alignment scheme for face recognition in range images
Face recognition in range images is a challenging task, especially if the pose of the shown face is unknown. To solve this, an alignment procedure consisting of facial feature hypotheses extraction by invariant curvature features, PCA-based classification and Iterative Closest Point alignment will b...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2751 |
---|---|
container_issue | |
container_start_page | 2748 |
container_title | |
container_volume | |
creator | Stormer, A. Rigoll, G. |
description | Face recognition in range images is a challenging task, especially if the pose of the shown face is unknown. To solve this, an alignment procedure consisting of facial feature hypotheses extraction by invariant curvature features, PCA-based classification and Iterative Closest Point alignment will be introduced to create aligned and normalized patches. These patches will then be used in a recognition algorithm, a discrete Pseudo 2-Dimensional Hidden Markov Model approach based on vector quantized DCTmod2 features. The results of this processing chain are discussed and compared to previous works. |
doi_str_mv | 10.1109/ICIP.2008.4712363 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4712363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4712363</ieee_id><sourcerecordid>4712363</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-70528f3d52900fe39a53aebc7ba2fb545addef4f15182ef45b4d623c1e1796c63</originalsourceid><addsrcrecordid>eNpVkMtKxDAYheMNrOM8gLjJC6Tmz6VJlmMZtTCgC10PafunRnoZmrrw7R1wNq7OgQ_OB4eQO-A5AHcPVVm95YJzmysDQhbyjKydsaCEUmAKJc9JJqQFZrVyF_-Y5pckAy0EU9bya3KT0hfngoOEjDxu6PDdL5GlBQ_U97EbBxwXmppPHJCGaabBN0hnbKZujEucRhpHOvuxQxoH32G6JVfB9wnXp1yRj6fte_nCdq_PVbnZsQhGL8xwLWyQrRaO84DSeS091o2pvQi1Vtq3LQYVQIMVx6Jr1RZCNoBgXNEUckXu_3YjIu4P89E-_-xPd8hfkIFOyQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A multi-step alignment scheme for face recognition in range images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Stormer, A. ; Rigoll, G.</creator><creatorcontrib>Stormer, A. ; Rigoll, G.</creatorcontrib><description>Face recognition in range images is a challenging task, especially if the pose of the shown face is unknown. To solve this, an alignment procedure consisting of facial feature hypotheses extraction by invariant curvature features, PCA-based classification and Iterative Closest Point alignment will be introduced to create aligned and normalized patches. These patches will then be used in a recognition algorithm, a discrete Pseudo 2-Dimensional Hidden Markov Model approach based on vector quantized DCTmod2 features. The results of this processing chain are discussed and compared to previous works.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424417650</identifier><identifier>ISBN: 1424417651</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424417643</identifier><identifier>EISBN: 1424417643</identifier><identifier>DOI: 10.1109/ICIP.2008.4712363</identifier><language>eng</language><publisher>IEEE</publisher><subject>Covariance matrix ; Eigenvalues and eigenfunctions ; Face detection ; Face recognition ; Facial features ; Hidden Markov models ; Image databases ; Iterative algorithms ; Iterative closest point algorithm ; Low pass filters ; Statistic modeling</subject><ispartof>2008 15th IEEE International Conference on Image Processing, 2008, p.2748-2751</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4712363$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4712363$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Stormer, A.</creatorcontrib><creatorcontrib>Rigoll, G.</creatorcontrib><title>A multi-step alignment scheme for face recognition in range images</title><title>2008 15th IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>Face recognition in range images is a challenging task, especially if the pose of the shown face is unknown. To solve this, an alignment procedure consisting of facial feature hypotheses extraction by invariant curvature features, PCA-based classification and Iterative Closest Point alignment will be introduced to create aligned and normalized patches. These patches will then be used in a recognition algorithm, a discrete Pseudo 2-Dimensional Hidden Markov Model approach based on vector quantized DCTmod2 features. The results of this processing chain are discussed and compared to previous works.</description><subject>Covariance matrix</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Face detection</subject><subject>Face recognition</subject><subject>Facial features</subject><subject>Hidden Markov models</subject><subject>Image databases</subject><subject>Iterative algorithms</subject><subject>Iterative closest point algorithm</subject><subject>Low pass filters</subject><subject>Statistic modeling</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424417650</isbn><isbn>1424417651</isbn><isbn>9781424417643</isbn><isbn>1424417643</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtKxDAYheMNrOM8gLjJC6Tmz6VJlmMZtTCgC10PafunRnoZmrrw7R1wNq7OgQ_OB4eQO-A5AHcPVVm95YJzmysDQhbyjKydsaCEUmAKJc9JJqQFZrVyF_-Y5pckAy0EU9bya3KT0hfngoOEjDxu6PDdL5GlBQ_U97EbBxwXmppPHJCGaabBN0hnbKZujEucRhpHOvuxQxoH32G6JVfB9wnXp1yRj6fte_nCdq_PVbnZsQhGL8xwLWyQrRaO84DSeS091o2pvQi1Vtq3LQYVQIMVx6Jr1RZCNoBgXNEUckXu_3YjIu4P89E-_-xPd8hfkIFOyQ</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Stormer, A.</creator><creator>Rigoll, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200810</creationdate><title>A multi-step alignment scheme for face recognition in range images</title><author>Stormer, A. ; Rigoll, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-70528f3d52900fe39a53aebc7ba2fb545addef4f15182ef45b4d623c1e1796c63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Covariance matrix</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Face detection</topic><topic>Face recognition</topic><topic>Facial features</topic><topic>Hidden Markov models</topic><topic>Image databases</topic><topic>Iterative algorithms</topic><topic>Iterative closest point algorithm</topic><topic>Low pass filters</topic><topic>Statistic modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Stormer, A.</creatorcontrib><creatorcontrib>Rigoll, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stormer, A.</au><au>Rigoll, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A multi-step alignment scheme for face recognition in range images</atitle><btitle>2008 15th IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2008-10</date><risdate>2008</risdate><spage>2748</spage><epage>2751</epage><pages>2748-2751</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424417650</isbn><isbn>1424417651</isbn><eisbn>9781424417643</eisbn><eisbn>1424417643</eisbn><abstract>Face recognition in range images is a challenging task, especially if the pose of the shown face is unknown. To solve this, an alignment procedure consisting of facial feature hypotheses extraction by invariant curvature features, PCA-based classification and Iterative Closest Point alignment will be introduced to create aligned and normalized patches. These patches will then be used in a recognition algorithm, a discrete Pseudo 2-Dimensional Hidden Markov Model approach based on vector quantized DCTmod2 features. The results of this processing chain are discussed and compared to previous works.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2008.4712363</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-4880 |
ispartof | 2008 15th IEEE International Conference on Image Processing, 2008, p.2748-2751 |
issn | 1522-4880 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_4712363 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Covariance matrix Eigenvalues and eigenfunctions Face detection Face recognition Facial features Hidden Markov models Image databases Iterative algorithms Iterative closest point algorithm Low pass filters Statistic modeling |
title | A multi-step alignment scheme for face recognition in range images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20multi-step%20alignment%20scheme%20for%20face%20recognition%20in%20range%20images&rft.btitle=2008%2015th%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Stormer,%20A.&rft.date=2008-10&rft.spage=2748&rft.epage=2751&rft.pages=2748-2751&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424417650&rft.isbn_list=1424417651&rft_id=info:doi/10.1109/ICIP.2008.4712363&rft_dat=%3Cieee_6IE%3E4712363%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424417643&rft.eisbn_list=1424417643&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4712363&rfr_iscdi=true |