A multi-step alignment scheme for face recognition in range images

Face recognition in range images is a challenging task, especially if the pose of the shown face is unknown. To solve this, an alignment procedure consisting of facial feature hypotheses extraction by invariant curvature features, PCA-based classification and Iterative Closest Point alignment will b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Stormer, A., Rigoll, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2751
container_issue
container_start_page 2748
container_title
container_volume
creator Stormer, A.
Rigoll, G.
description Face recognition in range images is a challenging task, especially if the pose of the shown face is unknown. To solve this, an alignment procedure consisting of facial feature hypotheses extraction by invariant curvature features, PCA-based classification and Iterative Closest Point alignment will be introduced to create aligned and normalized patches. These patches will then be used in a recognition algorithm, a discrete Pseudo 2-Dimensional Hidden Markov Model approach based on vector quantized DCTmod2 features. The results of this processing chain are discussed and compared to previous works.
doi_str_mv 10.1109/ICIP.2008.4712363
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4712363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4712363</ieee_id><sourcerecordid>4712363</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-70528f3d52900fe39a53aebc7ba2fb545addef4f15182ef45b4d623c1e1796c63</originalsourceid><addsrcrecordid>eNpVkMtKxDAYheMNrOM8gLjJC6Tmz6VJlmMZtTCgC10PafunRnoZmrrw7R1wNq7OgQ_OB4eQO-A5AHcPVVm95YJzmysDQhbyjKydsaCEUmAKJc9JJqQFZrVyF_-Y5pckAy0EU9bya3KT0hfngoOEjDxu6PDdL5GlBQ_U97EbBxwXmppPHJCGaabBN0hnbKZujEucRhpHOvuxQxoH32G6JVfB9wnXp1yRj6fte_nCdq_PVbnZsQhGL8xwLWyQrRaO84DSeS091o2pvQi1Vtq3LQYVQIMVx6Jr1RZCNoBgXNEUckXu_3YjIu4P89E-_-xPd8hfkIFOyQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A multi-step alignment scheme for face recognition in range images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Stormer, A. ; Rigoll, G.</creator><creatorcontrib>Stormer, A. ; Rigoll, G.</creatorcontrib><description>Face recognition in range images is a challenging task, especially if the pose of the shown face is unknown. To solve this, an alignment procedure consisting of facial feature hypotheses extraction by invariant curvature features, PCA-based classification and Iterative Closest Point alignment will be introduced to create aligned and normalized patches. These patches will then be used in a recognition algorithm, a discrete Pseudo 2-Dimensional Hidden Markov Model approach based on vector quantized DCTmod2 features. The results of this processing chain are discussed and compared to previous works.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424417650</identifier><identifier>ISBN: 1424417651</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424417643</identifier><identifier>EISBN: 1424417643</identifier><identifier>DOI: 10.1109/ICIP.2008.4712363</identifier><language>eng</language><publisher>IEEE</publisher><subject>Covariance matrix ; Eigenvalues and eigenfunctions ; Face detection ; Face recognition ; Facial features ; Hidden Markov models ; Image databases ; Iterative algorithms ; Iterative closest point algorithm ; Low pass filters ; Statistic modeling</subject><ispartof>2008 15th IEEE International Conference on Image Processing, 2008, p.2748-2751</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4712363$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4712363$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Stormer, A.</creatorcontrib><creatorcontrib>Rigoll, G.</creatorcontrib><title>A multi-step alignment scheme for face recognition in range images</title><title>2008 15th IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>Face recognition in range images is a challenging task, especially if the pose of the shown face is unknown. To solve this, an alignment procedure consisting of facial feature hypotheses extraction by invariant curvature features, PCA-based classification and Iterative Closest Point alignment will be introduced to create aligned and normalized patches. These patches will then be used in a recognition algorithm, a discrete Pseudo 2-Dimensional Hidden Markov Model approach based on vector quantized DCTmod2 features. The results of this processing chain are discussed and compared to previous works.</description><subject>Covariance matrix</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Face detection</subject><subject>Face recognition</subject><subject>Facial features</subject><subject>Hidden Markov models</subject><subject>Image databases</subject><subject>Iterative algorithms</subject><subject>Iterative closest point algorithm</subject><subject>Low pass filters</subject><subject>Statistic modeling</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424417650</isbn><isbn>1424417651</isbn><isbn>9781424417643</isbn><isbn>1424417643</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtKxDAYheMNrOM8gLjJC6Tmz6VJlmMZtTCgC10PafunRnoZmrrw7R1wNq7OgQ_OB4eQO-A5AHcPVVm95YJzmysDQhbyjKydsaCEUmAKJc9JJqQFZrVyF_-Y5pckAy0EU9bya3KT0hfngoOEjDxu6PDdL5GlBQ_U97EbBxwXmppPHJCGaabBN0hnbKZujEucRhpHOvuxQxoH32G6JVfB9wnXp1yRj6fte_nCdq_PVbnZsQhGL8xwLWyQrRaO84DSeS091o2pvQi1Vtq3LQYVQIMVx6Jr1RZCNoBgXNEUckXu_3YjIu4P89E-_-xPd8hfkIFOyQ</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Stormer, A.</creator><creator>Rigoll, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200810</creationdate><title>A multi-step alignment scheme for face recognition in range images</title><author>Stormer, A. ; Rigoll, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-70528f3d52900fe39a53aebc7ba2fb545addef4f15182ef45b4d623c1e1796c63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Covariance matrix</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Face detection</topic><topic>Face recognition</topic><topic>Facial features</topic><topic>Hidden Markov models</topic><topic>Image databases</topic><topic>Iterative algorithms</topic><topic>Iterative closest point algorithm</topic><topic>Low pass filters</topic><topic>Statistic modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Stormer, A.</creatorcontrib><creatorcontrib>Rigoll, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stormer, A.</au><au>Rigoll, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A multi-step alignment scheme for face recognition in range images</atitle><btitle>2008 15th IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2008-10</date><risdate>2008</risdate><spage>2748</spage><epage>2751</epage><pages>2748-2751</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424417650</isbn><isbn>1424417651</isbn><eisbn>9781424417643</eisbn><eisbn>1424417643</eisbn><abstract>Face recognition in range images is a challenging task, especially if the pose of the shown face is unknown. To solve this, an alignment procedure consisting of facial feature hypotheses extraction by invariant curvature features, PCA-based classification and Iterative Closest Point alignment will be introduced to create aligned and normalized patches. These patches will then be used in a recognition algorithm, a discrete Pseudo 2-Dimensional Hidden Markov Model approach based on vector quantized DCTmod2 features. The results of this processing chain are discussed and compared to previous works.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2008.4712363</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2008 15th IEEE International Conference on Image Processing, 2008, p.2748-2751
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_4712363
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Covariance matrix
Eigenvalues and eigenfunctions
Face detection
Face recognition
Facial features
Hidden Markov models
Image databases
Iterative algorithms
Iterative closest point algorithm
Low pass filters
Statistic modeling
title A multi-step alignment scheme for face recognition in range images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20multi-step%20alignment%20scheme%20for%20face%20recognition%20in%20range%20images&rft.btitle=2008%2015th%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Stormer,%20A.&rft.date=2008-10&rft.spage=2748&rft.epage=2751&rft.pages=2748-2751&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424417650&rft.isbn_list=1424417651&rft_id=info:doi/10.1109/ICIP.2008.4712363&rft_dat=%3Cieee_6IE%3E4712363%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424417643&rft.eisbn_list=1424417643&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4712363&rfr_iscdi=true