Conditional iterative decoding of Two Dimensional Hidden Markov Models

Two dimensional hidden markov models (2D-HMMs) provide substantial benefits for many computer vision and image analysis applications. Many fundamental image analysis problems, including segmentation and classification, are target applications for the 2D- HMMs. As opposed to the i.i.d. assumption of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sargin, M.E., Altinok, A., Rose, K., Manjunath, B.S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2555
container_issue
container_start_page 2552
container_title
container_volume
creator Sargin, M.E.
Altinok, A.
Rose, K.
Manjunath, B.S.
description Two dimensional hidden markov models (2D-HMMs) provide substantial benefits for many computer vision and image analysis applications. Many fundamental image analysis problems, including segmentation and classification, are target applications for the 2D- HMMs. As opposed to the i.i.d. assumption of the image observations, the naturally existing spatial correlations can be readily modeled by solving the 2D-HMM decoding problem. However, computational complexity of the 2D-HMM decoding grows exponentially with the image size and is known to be NP-hard. In this paper, we present a conditional iterative decoding (CID) algorithm for the approximate decoding of 2D-HMMs. We compare the performance of the CID algorithm to the Turbo-HMM (T-HMM) decoding algorithm and show that CID gives promising results. We demonstrate the proposed algorithm on modeling spatial deformations of human faces in recognizing people across their different facial expressions.
doi_str_mv 10.1109/ICIP.2008.4712314
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4712314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4712314</ieee_id><sourcerecordid>4712314</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-399ac416b94aaa5da355e5cca1adb3cbd8157356c39595dc14d0adc06b066be63</originalsourceid><addsrcrecordid>eNpVkL1OwzAURs2fRCl9AMTiF0jw9V_sEQVKK7WCoczVja-LDGmMkqiIt2doF6ZvOEdn-Bi7A1ECCP-wrJdvpRTClboCqUCfsZmvHGipNVRWq3M2kcpB4Yz2F_-YEZdsAkbKQjsnrtnNMHwKIQUomLB5nTtKY8odtjyNsccxHSKnGDKl7oPnHd_8ZP6U9rEbjtYiEcWOr7H_yge-zhTb4ZZd7bAd4uy0U_Y-f97Ui2L1-rKsH1dFkuDGQnmPQYNtvEZEQ6iMiSYEBKRGhYYcmEoZG5Q33lAATQIpCNsIa5to1ZTdH7spxrj97tMe-9_t6RL1B0XKULg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Conditional iterative decoding of Two Dimensional Hidden Markov Models</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sargin, M.E. ; Altinok, A. ; Rose, K. ; Manjunath, B.S.</creator><creatorcontrib>Sargin, M.E. ; Altinok, A. ; Rose, K. ; Manjunath, B.S.</creatorcontrib><description>Two dimensional hidden markov models (2D-HMMs) provide substantial benefits for many computer vision and image analysis applications. Many fundamental image analysis problems, including segmentation and classification, are target applications for the 2D- HMMs. As opposed to the i.i.d. assumption of the image observations, the naturally existing spatial correlations can be readily modeled by solving the 2D-HMM decoding problem. However, computational complexity of the 2D-HMM decoding grows exponentially with the image size and is known to be NP-hard. In this paper, we present a conditional iterative decoding (CID) algorithm for the approximate decoding of 2D-HMMs. We compare the performance of the CID algorithm to the Turbo-HMM (T-HMM) decoding algorithm and show that CID gives promising results. We demonstrate the proposed algorithm on modeling spatial deformations of human faces in recognizing people across their different facial expressions.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424417650</identifier><identifier>ISBN: 1424417651</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424417643</identifier><identifier>EISBN: 1424417643</identifier><identifier>DOI: 10.1109/ICIP.2008.4712314</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Computational complexity ; Computer vision ; Deformable models ; Hidden Markov models ; Humans ; Image analysis ; Image segmentation ; Iterative algorithms ; Iterative decoding</subject><ispartof>2008 15th IEEE International Conference on Image Processing, 2008, p.2552-2555</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4712314$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4712314$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sargin, M.E.</creatorcontrib><creatorcontrib>Altinok, A.</creatorcontrib><creatorcontrib>Rose, K.</creatorcontrib><creatorcontrib>Manjunath, B.S.</creatorcontrib><title>Conditional iterative decoding of Two Dimensional Hidden Markov Models</title><title>2008 15th IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>Two dimensional hidden markov models (2D-HMMs) provide substantial benefits for many computer vision and image analysis applications. Many fundamental image analysis problems, including segmentation and classification, are target applications for the 2D- HMMs. As opposed to the i.i.d. assumption of the image observations, the naturally existing spatial correlations can be readily modeled by solving the 2D-HMM decoding problem. However, computational complexity of the 2D-HMM decoding grows exponentially with the image size and is known to be NP-hard. In this paper, we present a conditional iterative decoding (CID) algorithm for the approximate decoding of 2D-HMMs. We compare the performance of the CID algorithm to the Turbo-HMM (T-HMM) decoding algorithm and show that CID gives promising results. We demonstrate the proposed algorithm on modeling spatial deformations of human faces in recognizing people across their different facial expressions.</description><subject>Application software</subject><subject>Computational complexity</subject><subject>Computer vision</subject><subject>Deformable models</subject><subject>Hidden Markov models</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image segmentation</subject><subject>Iterative algorithms</subject><subject>Iterative decoding</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424417650</isbn><isbn>1424417651</isbn><isbn>9781424417643</isbn><isbn>1424417643</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkL1OwzAURs2fRCl9AMTiF0jw9V_sEQVKK7WCoczVja-LDGmMkqiIt2doF6ZvOEdn-Bi7A1ECCP-wrJdvpRTClboCqUCfsZmvHGipNVRWq3M2kcpB4Yz2F_-YEZdsAkbKQjsnrtnNMHwKIQUomLB5nTtKY8odtjyNsccxHSKnGDKl7oPnHd_8ZP6U9rEbjtYiEcWOr7H_yge-zhTb4ZZd7bAd4uy0U_Y-f97Ui2L1-rKsH1dFkuDGQnmPQYNtvEZEQ6iMiSYEBKRGhYYcmEoZG5Q33lAATQIpCNsIa5to1ZTdH7spxrj97tMe-9_t6RL1B0XKULg</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Sargin, M.E.</creator><creator>Altinok, A.</creator><creator>Rose, K.</creator><creator>Manjunath, B.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20080101</creationdate><title>Conditional iterative decoding of Two Dimensional Hidden Markov Models</title><author>Sargin, M.E. ; Altinok, A. ; Rose, K. ; Manjunath, B.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-399ac416b94aaa5da355e5cca1adb3cbd8157356c39595dc14d0adc06b066be63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Application software</topic><topic>Computational complexity</topic><topic>Computer vision</topic><topic>Deformable models</topic><topic>Hidden Markov models</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image segmentation</topic><topic>Iterative algorithms</topic><topic>Iterative decoding</topic><toplevel>online_resources</toplevel><creatorcontrib>Sargin, M.E.</creatorcontrib><creatorcontrib>Altinok, A.</creatorcontrib><creatorcontrib>Rose, K.</creatorcontrib><creatorcontrib>Manjunath, B.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sargin, M.E.</au><au>Altinok, A.</au><au>Rose, K.</au><au>Manjunath, B.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Conditional iterative decoding of Two Dimensional Hidden Markov Models</atitle><btitle>2008 15th IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2008-01-01</date><risdate>2008</risdate><spage>2552</spage><epage>2555</epage><pages>2552-2555</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424417650</isbn><isbn>1424417651</isbn><eisbn>9781424417643</eisbn><eisbn>1424417643</eisbn><abstract>Two dimensional hidden markov models (2D-HMMs) provide substantial benefits for many computer vision and image analysis applications. Many fundamental image analysis problems, including segmentation and classification, are target applications for the 2D- HMMs. As opposed to the i.i.d. assumption of the image observations, the naturally existing spatial correlations can be readily modeled by solving the 2D-HMM decoding problem. However, computational complexity of the 2D-HMM decoding grows exponentially with the image size and is known to be NP-hard. In this paper, we present a conditional iterative decoding (CID) algorithm for the approximate decoding of 2D-HMMs. We compare the performance of the CID algorithm to the Turbo-HMM (T-HMM) decoding algorithm and show that CID gives promising results. We demonstrate the proposed algorithm on modeling spatial deformations of human faces in recognizing people across their different facial expressions.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2008.4712314</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2008 15th IEEE International Conference on Image Processing, 2008, p.2552-2555
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_4712314
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Computational complexity
Computer vision
Deformable models
Hidden Markov models
Humans
Image analysis
Image segmentation
Iterative algorithms
Iterative decoding
title Conditional iterative decoding of Two Dimensional Hidden Markov Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A18%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Conditional%20iterative%20decoding%20of%20Two%20Dimensional%20Hidden%20Markov%20Models&rft.btitle=2008%2015th%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Sargin,%20M.E.&rft.date=2008-01-01&rft.spage=2552&rft.epage=2555&rft.pages=2552-2555&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424417650&rft.isbn_list=1424417651&rft_id=info:doi/10.1109/ICIP.2008.4712314&rft_dat=%3Cieee_6IE%3E4712314%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424417643&rft.eisbn_list=1424417643&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4712314&rfr_iscdi=true