Integrating system health management into the early design of aerospace systems using Functional Fault Analysis
This paper introduces a systematic design methodology, namely the functional fault analysis (FFA), developed with the goal of integrating SHM into early design of aerospace systems. The basis for the FFA methodology is a high-level, functional model of a system that captures the physical architectur...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Kurtoglu, T. Johnson, S.B. Barszcz, E. Johnson, J.R. Robinson, P.I. |
description | This paper introduces a systematic design methodology, namely the functional fault analysis (FFA), developed with the goal of integrating SHM into early design of aerospace systems. The basis for the FFA methodology is a high-level, functional model of a system that captures the physical architecture, including the physical connectivity of energy, material, and data flows within the system. The model also contains all sensory information, failure modes associated with each component of the system, the propagation of the effects of these failure modes, and the characteristic timing by which fault effects propagate along the modeled physical paths. Using this integrated model, the designers and system analysts can assess the sensor suitepsilas diagnostic functionality and analyze the ldquoracerdquo between the propagation of fault effects and the fault detection isolation and response (FDIR) mechanisms designed to compensate and respond to them. The Ares I Crew Launch Vehicle has been introduced as a case example to illustrate the use of the Functional Fault Analysis (FFA) methodology during system design. |
doi_str_mv | 10.1109/PHM.2008.4711425 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4711425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4711425</ieee_id><sourcerecordid>4711425</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-674bab2fbdb5931bd0d57eba1f794e290ac59b1dd3effbe1b46ee0e756a5e10f3</originalsourceid><addsrcrecordid>eNpFULFqwzAUVCmBNmn2Qhf9QFzJlqxqDKFuAintkD082U-2ii0HSx7893VpILfcHdzdcIQ8c5ZwzvTr9_4zSRl7S4TiXKTyjixnEoLrLGf3NyPTBVnOQaWZTnn-QNYh_LAZQma5VI-kP_iI9QDR-ZqGKUTsaIPQxoZ24KHGDn2kzseexgYpwtBOtMLgak97SwGHPlygxGs30DH8LRWjL6PrPbS0gLGNdDvLKbjwRBYW2oDrK6_IqXg_7fab49fHYbc9bpxmcZMrYcCk1lRG6oybilVSoQFulRaYagal1IZXVYbWGuRG5IgMlcxBImc2W5GX_1mHiOfL4DoYpvP1rOwXmfxe5w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Integrating system health management into the early design of aerospace systems using Functional Fault Analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kurtoglu, T. ; Johnson, S.B. ; Barszcz, E. ; Johnson, J.R. ; Robinson, P.I.</creator><creatorcontrib>Kurtoglu, T. ; Johnson, S.B. ; Barszcz, E. ; Johnson, J.R. ; Robinson, P.I.</creatorcontrib><description>This paper introduces a systematic design methodology, namely the functional fault analysis (FFA), developed with the goal of integrating SHM into early design of aerospace systems. The basis for the FFA methodology is a high-level, functional model of a system that captures the physical architecture, including the physical connectivity of energy, material, and data flows within the system. The model also contains all sensory information, failure modes associated with each component of the system, the propagation of the effects of these failure modes, and the characteristic timing by which fault effects propagate along the modeled physical paths. Using this integrated model, the designers and system analysts can assess the sensor suitepsilas diagnostic functionality and analyze the ldquoracerdquo between the propagation of fault effects and the fault detection isolation and response (FDIR) mechanisms designed to compensate and respond to them. The Ares I Crew Launch Vehicle has been introduced as a case example to illustrate the use of the Functional Fault Analysis (FFA) methodology during system design.</description><identifier>ISBN: 1424419352</identifier><identifier>ISBN: 9781424419357</identifier><identifier>EISBN: 1424419360</identifier><identifier>EISBN: 9781424419364</identifier><identifier>DOI: 10.1109/PHM.2008.4711425</identifier><identifier>LCCN: 2007909216</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerospace materials ; Design engineering ; Engineering management ; Fault detection ; Fault Detection Isolation and Response (FDIR) ; Functional Design ; Health and safety ; Instruments ; NASA ; Prognostics and health management ; Sensor systems ; Space technology ; Systems Health Management ; Testability Analysis</subject><ispartof>2008 International Conference on Prognostics and Health Management, 2008, p.1-11</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4711425$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4711425$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kurtoglu, T.</creatorcontrib><creatorcontrib>Johnson, S.B.</creatorcontrib><creatorcontrib>Barszcz, E.</creatorcontrib><creatorcontrib>Johnson, J.R.</creatorcontrib><creatorcontrib>Robinson, P.I.</creatorcontrib><title>Integrating system health management into the early design of aerospace systems using Functional Fault Analysis</title><title>2008 International Conference on Prognostics and Health Management</title><addtitle>PHM</addtitle><description>This paper introduces a systematic design methodology, namely the functional fault analysis (FFA), developed with the goal of integrating SHM into early design of aerospace systems. The basis for the FFA methodology is a high-level, functional model of a system that captures the physical architecture, including the physical connectivity of energy, material, and data flows within the system. The model also contains all sensory information, failure modes associated with each component of the system, the propagation of the effects of these failure modes, and the characteristic timing by which fault effects propagate along the modeled physical paths. Using this integrated model, the designers and system analysts can assess the sensor suitepsilas diagnostic functionality and analyze the ldquoracerdquo between the propagation of fault effects and the fault detection isolation and response (FDIR) mechanisms designed to compensate and respond to them. The Ares I Crew Launch Vehicle has been introduced as a case example to illustrate the use of the Functional Fault Analysis (FFA) methodology during system design.</description><subject>Aerospace materials</subject><subject>Design engineering</subject><subject>Engineering management</subject><subject>Fault detection</subject><subject>Fault Detection Isolation and Response (FDIR)</subject><subject>Functional Design</subject><subject>Health and safety</subject><subject>Instruments</subject><subject>NASA</subject><subject>Prognostics and health management</subject><subject>Sensor systems</subject><subject>Space technology</subject><subject>Systems Health Management</subject><subject>Testability Analysis</subject><isbn>1424419352</isbn><isbn>9781424419357</isbn><isbn>1424419360</isbn><isbn>9781424419364</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFULFqwzAUVCmBNmn2Qhf9QFzJlqxqDKFuAintkD082U-2ii0HSx7893VpILfcHdzdcIQ8c5ZwzvTr9_4zSRl7S4TiXKTyjixnEoLrLGf3NyPTBVnOQaWZTnn-QNYh_LAZQma5VI-kP_iI9QDR-ZqGKUTsaIPQxoZ24KHGDn2kzseexgYpwtBOtMLgak97SwGHPlygxGs30DH8LRWjL6PrPbS0gLGNdDvLKbjwRBYW2oDrK6_IqXg_7fab49fHYbc9bpxmcZMrYcCk1lRG6oybilVSoQFulRaYagal1IZXVYbWGuRG5IgMlcxBImc2W5GX_1mHiOfL4DoYpvP1rOwXmfxe5w</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Kurtoglu, T.</creator><creator>Johnson, S.B.</creator><creator>Barszcz, E.</creator><creator>Johnson, J.R.</creator><creator>Robinson, P.I.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200810</creationdate><title>Integrating system health management into the early design of aerospace systems using Functional Fault Analysis</title><author>Kurtoglu, T. ; Johnson, S.B. ; Barszcz, E. ; Johnson, J.R. ; Robinson, P.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-674bab2fbdb5931bd0d57eba1f794e290ac59b1dd3effbe1b46ee0e756a5e10f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aerospace materials</topic><topic>Design engineering</topic><topic>Engineering management</topic><topic>Fault detection</topic><topic>Fault Detection Isolation and Response (FDIR)</topic><topic>Functional Design</topic><topic>Health and safety</topic><topic>Instruments</topic><topic>NASA</topic><topic>Prognostics and health management</topic><topic>Sensor systems</topic><topic>Space technology</topic><topic>Systems Health Management</topic><topic>Testability Analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Kurtoglu, T.</creatorcontrib><creatorcontrib>Johnson, S.B.</creatorcontrib><creatorcontrib>Barszcz, E.</creatorcontrib><creatorcontrib>Johnson, J.R.</creatorcontrib><creatorcontrib>Robinson, P.I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kurtoglu, T.</au><au>Johnson, S.B.</au><au>Barszcz, E.</au><au>Johnson, J.R.</au><au>Robinson, P.I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Integrating system health management into the early design of aerospace systems using Functional Fault Analysis</atitle><btitle>2008 International Conference on Prognostics and Health Management</btitle><stitle>PHM</stitle><date>2008-10</date><risdate>2008</risdate><spage>1</spage><epage>11</epage><pages>1-11</pages><isbn>1424419352</isbn><isbn>9781424419357</isbn><eisbn>1424419360</eisbn><eisbn>9781424419364</eisbn><abstract>This paper introduces a systematic design methodology, namely the functional fault analysis (FFA), developed with the goal of integrating SHM into early design of aerospace systems. The basis for the FFA methodology is a high-level, functional model of a system that captures the physical architecture, including the physical connectivity of energy, material, and data flows within the system. The model also contains all sensory information, failure modes associated with each component of the system, the propagation of the effects of these failure modes, and the characteristic timing by which fault effects propagate along the modeled physical paths. Using this integrated model, the designers and system analysts can assess the sensor suitepsilas diagnostic functionality and analyze the ldquoracerdquo between the propagation of fault effects and the fault detection isolation and response (FDIR) mechanisms designed to compensate and respond to them. The Ares I Crew Launch Vehicle has been introduced as a case example to illustrate the use of the Functional Fault Analysis (FFA) methodology during system design.</abstract><pub>IEEE</pub><doi>10.1109/PHM.2008.4711425</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424419352 |
ispartof | 2008 International Conference on Prognostics and Health Management, 2008, p.1-11 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4711425 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Aerospace materials Design engineering Engineering management Fault detection Fault Detection Isolation and Response (FDIR) Functional Design Health and safety Instruments NASA Prognostics and health management Sensor systems Space technology Systems Health Management Testability Analysis |
title | Integrating system health management into the early design of aerospace systems using Functional Fault Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A47%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Integrating%20system%20health%20management%20into%20the%20early%20design%20of%20aerospace%20systems%20using%20Functional%20Fault%20Analysis&rft.btitle=2008%20International%20Conference%20on%20Prognostics%20and%20Health%20Management&rft.au=Kurtoglu,%20T.&rft.date=2008-10&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.isbn=1424419352&rft.isbn_list=9781424419357&rft_id=info:doi/10.1109/PHM.2008.4711425&rft_dat=%3Cieee_6IE%3E4711425%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424419360&rft.eisbn_list=9781424419364&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4711425&rfr_iscdi=true |