Graphical Models for Joint Segmentation and Recognition of License Plate Characters

We formulate the issue of joint image segmentation and recognition as an integrated statistical inference problem. A two-layer graphical model is proposed that supports the optimal segmentation and recognition in an unified Bayesian framework. Due to the explicit modeling of two tasks in the graphic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2009-01, Vol.16 (1), p.10-13
Hauptverfasser: Fan, Xin, Fan, Guoliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 1
container_start_page 10
container_title IEEE signal processing letters
container_volume 16
creator Fan, Xin
Fan, Guoliang
description We formulate the issue of joint image segmentation and recognition as an integrated statistical inference problem. A two-layer graphical model is proposed that supports the optimal segmentation and recognition in an unified Bayesian framework. Due to the explicit modeling of two tasks in the graphical model, an efficient non-iterative belief propagation algorithm is used for state estimation. The proposed approach is applied to automatic licence plate recognition (ALPR), and it outperforms traditional methods where the two tasks are implemented independently and sequentially.
doi_str_mv 10.1109/LSP.2008.2008486
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4711337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4711337</ieee_id><sourcerecordid>2316935251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-1833d16446bd2b1a08ee8a4aa8bef8887d11b197771d4160f5c2dd4c35bd6f133</originalsourceid><addsrcrecordid>eNqF0c9P2zAUB_BoGhIdcEfaxdphOwX8Yjt-OU4VY0xFIApny7Ff2lRp3Nnpgf9-hqIdOGwX_5A-z9LX36I4B34BwJvLxfL-ouIcXxeJ9YdiBkphWYkaPuYz17xsGo7HxaeUNjwjQDUrltfR7ta9swO7DZ6GxLoQ2a_QjxNb0mpL42SnPozMjp49kAursX-9h44tekdjInY_2InYfG2jdRPFdFocdXZIdPa2nxRPP64e5z_Lxd31zfz7onQC1VQCCuGhlrJufdWC5UiEVlqLLXWIqD1AC43WGryEmnfKVd5LJ1Tr6w6EOCm-Hd7dxfB7T2ky2z45GgY7Utgn0_CcXaOs_ytRq_xpQmOWX_8phZRV1VQ6wy_v4Cbs45jzGqxBSKEUz4gfkIshpUid2cV-a-OzAW5eajO5NvPSmHmrLY98Poz0RPSXSw05sBZ_AAVCkek</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861343550</pqid></control><display><type>article</type><title>Graphical Models for Joint Segmentation and Recognition of License Plate Characters</title><source>IEEE Electronic Library (IEL)</source><creator>Fan, Xin ; Fan, Guoliang</creator><creatorcontrib>Fan, Xin ; Fan, Guoliang</creatorcontrib><description>We formulate the issue of joint image segmentation and recognition as an integrated statistical inference problem. A two-layer graphical model is proposed that supports the optimal segmentation and recognition in an unified Bayesian framework. Due to the explicit modeling of two tasks in the graphical model, an efficient non-iterative belief propagation algorithm is used for state estimation. The proposed approach is applied to automatic licence plate recognition (ALPR), and it outperforms traditional methods where the two tasks are implemented independently and sequentially.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2008.2008486</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Automatic license plate recognition ; Belief propagation ; Character recognition ; character segmentation ; Face recognition ; Graphical models ; Image recognition ; Image segmentation ; License plate recognition ; Licenses ; Markov random fields ; Object detection ; Optimization ; Recognition ; Segmentation ; Speech recognition ; State estimation ; Tasks</subject><ispartof>IEEE signal processing letters, 2009-01, Vol.16 (1), p.10-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-1833d16446bd2b1a08ee8a4aa8bef8887d11b197771d4160f5c2dd4c35bd6f133</citedby><cites>FETCH-LOGICAL-c385t-1833d16446bd2b1a08ee8a4aa8bef8887d11b197771d4160f5c2dd4c35bd6f133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4711337$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4711337$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fan, Xin</creatorcontrib><creatorcontrib>Fan, Guoliang</creatorcontrib><title>Graphical Models for Joint Segmentation and Recognition of License Plate Characters</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>We formulate the issue of joint image segmentation and recognition as an integrated statistical inference problem. A two-layer graphical model is proposed that supports the optimal segmentation and recognition in an unified Bayesian framework. Due to the explicit modeling of two tasks in the graphical model, an efficient non-iterative belief propagation algorithm is used for state estimation. The proposed approach is applied to automatic licence plate recognition (ALPR), and it outperforms traditional methods where the two tasks are implemented independently and sequentially.</description><subject>Algorithms</subject><subject>Automatic license plate recognition</subject><subject>Belief propagation</subject><subject>Character recognition</subject><subject>character segmentation</subject><subject>Face recognition</subject><subject>Graphical models</subject><subject>Image recognition</subject><subject>Image segmentation</subject><subject>License plate recognition</subject><subject>Licenses</subject><subject>Markov random fields</subject><subject>Object detection</subject><subject>Optimization</subject><subject>Recognition</subject><subject>Segmentation</subject><subject>Speech recognition</subject><subject>State estimation</subject><subject>Tasks</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c9P2zAUB_BoGhIdcEfaxdphOwX8Yjt-OU4VY0xFIApny7Ff2lRp3Nnpgf9-hqIdOGwX_5A-z9LX36I4B34BwJvLxfL-ouIcXxeJ9YdiBkphWYkaPuYz17xsGo7HxaeUNjwjQDUrltfR7ta9swO7DZ6GxLoQ2a_QjxNb0mpL42SnPozMjp49kAursX-9h44tekdjInY_2InYfG2jdRPFdFocdXZIdPa2nxRPP64e5z_Lxd31zfz7onQC1VQCCuGhlrJufdWC5UiEVlqLLXWIqD1AC43WGryEmnfKVd5LJ1Tr6w6EOCm-Hd7dxfB7T2ky2z45GgY7Utgn0_CcXaOs_ytRq_xpQmOWX_8phZRV1VQ6wy_v4Cbs45jzGqxBSKEUz4gfkIshpUid2cV-a-OzAW5eajO5NvPSmHmrLY98Poz0RPSXSw05sBZ_AAVCkek</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Fan, Xin</creator><creator>Fan, Guoliang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200901</creationdate><title>Graphical Models for Joint Segmentation and Recognition of License Plate Characters</title><author>Fan, Xin ; Fan, Guoliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-1833d16446bd2b1a08ee8a4aa8bef8887d11b197771d4160f5c2dd4c35bd6f133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Automatic license plate recognition</topic><topic>Belief propagation</topic><topic>Character recognition</topic><topic>character segmentation</topic><topic>Face recognition</topic><topic>Graphical models</topic><topic>Image recognition</topic><topic>Image segmentation</topic><topic>License plate recognition</topic><topic>Licenses</topic><topic>Markov random fields</topic><topic>Object detection</topic><topic>Optimization</topic><topic>Recognition</topic><topic>Segmentation</topic><topic>Speech recognition</topic><topic>State estimation</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Xin</creatorcontrib><creatorcontrib>Fan, Guoliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fan, Xin</au><au>Fan, Guoliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphical Models for Joint Segmentation and Recognition of License Plate Characters</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2009-01</date><risdate>2009</risdate><volume>16</volume><issue>1</issue><spage>10</spage><epage>13</epage><pages>10-13</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>We formulate the issue of joint image segmentation and recognition as an integrated statistical inference problem. A two-layer graphical model is proposed that supports the optimal segmentation and recognition in an unified Bayesian framework. Due to the explicit modeling of two tasks in the graphical model, an efficient non-iterative belief propagation algorithm is used for state estimation. The proposed approach is applied to automatic licence plate recognition (ALPR), and it outperforms traditional methods where the two tasks are implemented independently and sequentially.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2008.2008486</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2009-01, Vol.16 (1), p.10-13
issn 1070-9908
1558-2361
language eng
recordid cdi_ieee_primary_4711337
source IEEE Electronic Library (IEL)
subjects Algorithms
Automatic license plate recognition
Belief propagation
Character recognition
character segmentation
Face recognition
Graphical models
Image recognition
Image segmentation
License plate recognition
Licenses
Markov random fields
Object detection
Optimization
Recognition
Segmentation
Speech recognition
State estimation
Tasks
title Graphical Models for Joint Segmentation and Recognition of License Plate Characters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A10%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphical%20Models%20for%20Joint%20Segmentation%20and%20Recognition%20of%20License%20Plate%20Characters&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Fan,%20Xin&rft.date=2009-01&rft.volume=16&rft.issue=1&rft.spage=10&rft.epage=13&rft.pages=10-13&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2008.2008486&rft_dat=%3Cproquest_RIE%3E2316935251%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861343550&rft_id=info:pmid/&rft_ieee_id=4711337&rfr_iscdi=true