Graphical Models for Joint Segmentation and Recognition of License Plate Characters
We formulate the issue of joint image segmentation and recognition as an integrated statistical inference problem. A two-layer graphical model is proposed that supports the optimal segmentation and recognition in an unified Bayesian framework. Due to the explicit modeling of two tasks in the graphic...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2009-01, Vol.16 (1), p.10-13 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 1 |
container_start_page | 10 |
container_title | IEEE signal processing letters |
container_volume | 16 |
creator | Fan, Xin Fan, Guoliang |
description | We formulate the issue of joint image segmentation and recognition as an integrated statistical inference problem. A two-layer graphical model is proposed that supports the optimal segmentation and recognition in an unified Bayesian framework. Due to the explicit modeling of two tasks in the graphical model, an efficient non-iterative belief propagation algorithm is used for state estimation. The proposed approach is applied to automatic licence plate recognition (ALPR), and it outperforms traditional methods where the two tasks are implemented independently and sequentially. |
doi_str_mv | 10.1109/LSP.2008.2008486 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4711337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4711337</ieee_id><sourcerecordid>2316935251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-1833d16446bd2b1a08ee8a4aa8bef8887d11b197771d4160f5c2dd4c35bd6f133</originalsourceid><addsrcrecordid>eNqF0c9P2zAUB_BoGhIdcEfaxdphOwX8Yjt-OU4VY0xFIApny7Ff2lRp3Nnpgf9-hqIdOGwX_5A-z9LX36I4B34BwJvLxfL-ouIcXxeJ9YdiBkphWYkaPuYz17xsGo7HxaeUNjwjQDUrltfR7ta9swO7DZ6GxLoQ2a_QjxNb0mpL42SnPozMjp49kAursX-9h44tekdjInY_2InYfG2jdRPFdFocdXZIdPa2nxRPP64e5z_Lxd31zfz7onQC1VQCCuGhlrJufdWC5UiEVlqLLXWIqD1AC43WGryEmnfKVd5LJ1Tr6w6EOCm-Hd7dxfB7T2ky2z45GgY7Utgn0_CcXaOs_ytRq_xpQmOWX_8phZRV1VQ6wy_v4Cbs45jzGqxBSKEUz4gfkIshpUid2cV-a-OzAW5eajO5NvPSmHmrLY98Poz0RPSXSw05sBZ_AAVCkek</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861343550</pqid></control><display><type>article</type><title>Graphical Models for Joint Segmentation and Recognition of License Plate Characters</title><source>IEEE Electronic Library (IEL)</source><creator>Fan, Xin ; Fan, Guoliang</creator><creatorcontrib>Fan, Xin ; Fan, Guoliang</creatorcontrib><description>We formulate the issue of joint image segmentation and recognition as an integrated statistical inference problem. A two-layer graphical model is proposed that supports the optimal segmentation and recognition in an unified Bayesian framework. Due to the explicit modeling of two tasks in the graphical model, an efficient non-iterative belief propagation algorithm is used for state estimation. The proposed approach is applied to automatic licence plate recognition (ALPR), and it outperforms traditional methods where the two tasks are implemented independently and sequentially.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2008.2008486</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Automatic license plate recognition ; Belief propagation ; Character recognition ; character segmentation ; Face recognition ; Graphical models ; Image recognition ; Image segmentation ; License plate recognition ; Licenses ; Markov random fields ; Object detection ; Optimization ; Recognition ; Segmentation ; Speech recognition ; State estimation ; Tasks</subject><ispartof>IEEE signal processing letters, 2009-01, Vol.16 (1), p.10-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-1833d16446bd2b1a08ee8a4aa8bef8887d11b197771d4160f5c2dd4c35bd6f133</citedby><cites>FETCH-LOGICAL-c385t-1833d16446bd2b1a08ee8a4aa8bef8887d11b197771d4160f5c2dd4c35bd6f133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4711337$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4711337$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fan, Xin</creatorcontrib><creatorcontrib>Fan, Guoliang</creatorcontrib><title>Graphical Models for Joint Segmentation and Recognition of License Plate Characters</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>We formulate the issue of joint image segmentation and recognition as an integrated statistical inference problem. A two-layer graphical model is proposed that supports the optimal segmentation and recognition in an unified Bayesian framework. Due to the explicit modeling of two tasks in the graphical model, an efficient non-iterative belief propagation algorithm is used for state estimation. The proposed approach is applied to automatic licence plate recognition (ALPR), and it outperforms traditional methods where the two tasks are implemented independently and sequentially.</description><subject>Algorithms</subject><subject>Automatic license plate recognition</subject><subject>Belief propagation</subject><subject>Character recognition</subject><subject>character segmentation</subject><subject>Face recognition</subject><subject>Graphical models</subject><subject>Image recognition</subject><subject>Image segmentation</subject><subject>License plate recognition</subject><subject>Licenses</subject><subject>Markov random fields</subject><subject>Object detection</subject><subject>Optimization</subject><subject>Recognition</subject><subject>Segmentation</subject><subject>Speech recognition</subject><subject>State estimation</subject><subject>Tasks</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c9P2zAUB_BoGhIdcEfaxdphOwX8Yjt-OU4VY0xFIApny7Ff2lRp3Nnpgf9-hqIdOGwX_5A-z9LX36I4B34BwJvLxfL-ouIcXxeJ9YdiBkphWYkaPuYz17xsGo7HxaeUNjwjQDUrltfR7ta9swO7DZ6GxLoQ2a_QjxNb0mpL42SnPozMjp49kAursX-9h44tekdjInY_2InYfG2jdRPFdFocdXZIdPa2nxRPP64e5z_Lxd31zfz7onQC1VQCCuGhlrJufdWC5UiEVlqLLXWIqD1AC43WGryEmnfKVd5LJ1Tr6w6EOCm-Hd7dxfB7T2ky2z45GgY7Utgn0_CcXaOs_ytRq_xpQmOWX_8phZRV1VQ6wy_v4Cbs45jzGqxBSKEUz4gfkIshpUid2cV-a-OzAW5eajO5NvPSmHmrLY98Poz0RPSXSw05sBZ_AAVCkek</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Fan, Xin</creator><creator>Fan, Guoliang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200901</creationdate><title>Graphical Models for Joint Segmentation and Recognition of License Plate Characters</title><author>Fan, Xin ; Fan, Guoliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-1833d16446bd2b1a08ee8a4aa8bef8887d11b197771d4160f5c2dd4c35bd6f133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Automatic license plate recognition</topic><topic>Belief propagation</topic><topic>Character recognition</topic><topic>character segmentation</topic><topic>Face recognition</topic><topic>Graphical models</topic><topic>Image recognition</topic><topic>Image segmentation</topic><topic>License plate recognition</topic><topic>Licenses</topic><topic>Markov random fields</topic><topic>Object detection</topic><topic>Optimization</topic><topic>Recognition</topic><topic>Segmentation</topic><topic>Speech recognition</topic><topic>State estimation</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Xin</creatorcontrib><creatorcontrib>Fan, Guoliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fan, Xin</au><au>Fan, Guoliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphical Models for Joint Segmentation and Recognition of License Plate Characters</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2009-01</date><risdate>2009</risdate><volume>16</volume><issue>1</issue><spage>10</spage><epage>13</epage><pages>10-13</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>We formulate the issue of joint image segmentation and recognition as an integrated statistical inference problem. A two-layer graphical model is proposed that supports the optimal segmentation and recognition in an unified Bayesian framework. Due to the explicit modeling of two tasks in the graphical model, an efficient non-iterative belief propagation algorithm is used for state estimation. The proposed approach is applied to automatic licence plate recognition (ALPR), and it outperforms traditional methods where the two tasks are implemented independently and sequentially.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2008.2008486</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2009-01, Vol.16 (1), p.10-13 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_ieee_primary_4711337 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Automatic license plate recognition Belief propagation Character recognition character segmentation Face recognition Graphical models Image recognition Image segmentation License plate recognition Licenses Markov random fields Object detection Optimization Recognition Segmentation Speech recognition State estimation Tasks |
title | Graphical Models for Joint Segmentation and Recognition of License Plate Characters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A10%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphical%20Models%20for%20Joint%20Segmentation%20and%20Recognition%20of%20License%20Plate%20Characters&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Fan,%20Xin&rft.date=2009-01&rft.volume=16&rft.issue=1&rft.spage=10&rft.epage=13&rft.pages=10-13&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2008.2008486&rft_dat=%3Cproquest_RIE%3E2316935251%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861343550&rft_id=info:pmid/&rft_ieee_id=4711337&rfr_iscdi=true |