Sparse representation based MRI denoising with total variation
Diffusion tensor magnetic resonance imaging is a newly developed imaging technique; however, this technique is noise sensitive. This paper presents a novel method for sparse representation denoising of MR images that propose sparse representation of the corrupted images with the knowledge of the Ric...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2157 |
---|---|
container_issue | |
container_start_page | 2154 |
container_title | |
container_volume | |
creator | Lijun Bao Wanyu Liu Yuemin Zhu Zhaobang Pu Magnin, I.E. |
description | Diffusion tensor magnetic resonance imaging is a newly developed imaging technique; however, this technique is noise sensitive. This paper presents a novel method for sparse representation denoising of MR images that propose sparse representation of the corrupted images with the knowledge of the Rician noise model. The proposed model inferring the prior that MR images are composed of several separated regions with uniform intensity, therefore, total variation can be combined to further smooth every region. Since sparse representation performs well in extracting features from images, coupled with the total variation regularization, the method offers excellent combination of noise removal and edge preservation. The experiment results demonstrate that the proposed method preserves most of the fine structure in cardiac diffusion weighted images. |
doi_str_mv | 10.1109/ICOSP.2008.4697573 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4697573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4697573</ieee_id><sourcerecordid>4697573</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ec2d08b839e5265f2807d2978a0dd713c1d565d489dc8c1e3aa07ccfe0bc2713</originalsourceid><addsrcrecordid>eNpFkN1Kw0AUhFe0YFv7AnqzL5B4zm6yPzeCFKuFSsV4Xza7J7pSk5ANim_vX8GrYZhv5mIYO0fIEcFerpfb6iEXACYvlNWllkdshoUoCoHa2uN_Y-CETQWqIiuFwAmb_ZQsICp9yhYpvQKARGOUVFN2VfVuSMQH6gdK1I5ujF3La5co8PvHNQ_UdjHF9pl_xPGFj93o9vzdDfEXPGOTxu0TLQ46Z9Xq5ml5l222t-vl9SaLFsaMvAhgaiMtlUKVjTCgg7DaOAhBo_QYSlWGwtjgjUeSzoH2viGovfjO5-zibzUS0a4f4psbPneHG-QXzKxNSw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sparse representation based MRI denoising with total variation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lijun Bao ; Wanyu Liu ; Yuemin Zhu ; Zhaobang Pu ; Magnin, I.E.</creator><creatorcontrib>Lijun Bao ; Wanyu Liu ; Yuemin Zhu ; Zhaobang Pu ; Magnin, I.E.</creatorcontrib><description>Diffusion tensor magnetic resonance imaging is a newly developed imaging technique; however, this technique is noise sensitive. This paper presents a novel method for sparse representation denoising of MR images that propose sparse representation of the corrupted images with the knowledge of the Rician noise model. The proposed model inferring the prior that MR images are composed of several separated regions with uniform intensity, therefore, total variation can be combined to further smooth every region. Since sparse representation performs well in extracting features from images, coupled with the total variation regularization, the method offers excellent combination of noise removal and edge preservation. The experiment results demonstrate that the proposed method preserves most of the fine structure in cardiac diffusion weighted images.</description><identifier>ISSN: 2164-5221</identifier><identifier>ISBN: 1424421780</identifier><identifier>ISBN: 9781424421787</identifier><identifier>EISBN: 1424421799</identifier><identifier>EISBN: 9781424421794</identifier><identifier>DOI: 10.1109/ICOSP.2008.4697573</identifier><identifier>LCCN: 2008901167</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Diffusion tensor imaging ; Filters ; Image denoising ; Magnetic noise ; Magnetic resonance imaging ; Noise level ; Noise reduction ; Rician channels ; Signal to noise ratio</subject><ispartof>2008 9th International Conference on Signal Processing, 2008, p.2154-2157</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4697573$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4697573$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lijun Bao</creatorcontrib><creatorcontrib>Wanyu Liu</creatorcontrib><creatorcontrib>Yuemin Zhu</creatorcontrib><creatorcontrib>Zhaobang Pu</creatorcontrib><creatorcontrib>Magnin, I.E.</creatorcontrib><title>Sparse representation based MRI denoising with total variation</title><title>2008 9th International Conference on Signal Processing</title><addtitle>ICOSP</addtitle><description>Diffusion tensor magnetic resonance imaging is a newly developed imaging technique; however, this technique is noise sensitive. This paper presents a novel method for sparse representation denoising of MR images that propose sparse representation of the corrupted images with the knowledge of the Rician noise model. The proposed model inferring the prior that MR images are composed of several separated regions with uniform intensity, therefore, total variation can be combined to further smooth every region. Since sparse representation performs well in extracting features from images, coupled with the total variation regularization, the method offers excellent combination of noise removal and edge preservation. The experiment results demonstrate that the proposed method preserves most of the fine structure in cardiac diffusion weighted images.</description><subject>Biomedical imaging</subject><subject>Diffusion tensor imaging</subject><subject>Filters</subject><subject>Image denoising</subject><subject>Magnetic noise</subject><subject>Magnetic resonance imaging</subject><subject>Noise level</subject><subject>Noise reduction</subject><subject>Rician channels</subject><subject>Signal to noise ratio</subject><issn>2164-5221</issn><isbn>1424421780</isbn><isbn>9781424421787</isbn><isbn>1424421799</isbn><isbn>9781424421794</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkN1Kw0AUhFe0YFv7AnqzL5B4zm6yPzeCFKuFSsV4Xza7J7pSk5ANim_vX8GrYZhv5mIYO0fIEcFerpfb6iEXACYvlNWllkdshoUoCoHa2uN_Y-CETQWqIiuFwAmb_ZQsICp9yhYpvQKARGOUVFN2VfVuSMQH6gdK1I5ujF3La5co8PvHNQ_UdjHF9pl_xPGFj93o9vzdDfEXPGOTxu0TLQ46Z9Xq5ml5l222t-vl9SaLFsaMvAhgaiMtlUKVjTCgg7DaOAhBo_QYSlWGwtjgjUeSzoH2viGovfjO5-zibzUS0a4f4psbPneHG-QXzKxNSw</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Lijun Bao</creator><creator>Wanyu Liu</creator><creator>Yuemin Zhu</creator><creator>Zhaobang Pu</creator><creator>Magnin, I.E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200810</creationdate><title>Sparse representation based MRI denoising with total variation</title><author>Lijun Bao ; Wanyu Liu ; Yuemin Zhu ; Zhaobang Pu ; Magnin, I.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ec2d08b839e5265f2807d2978a0dd713c1d565d489dc8c1e3aa07ccfe0bc2713</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biomedical imaging</topic><topic>Diffusion tensor imaging</topic><topic>Filters</topic><topic>Image denoising</topic><topic>Magnetic noise</topic><topic>Magnetic resonance imaging</topic><topic>Noise level</topic><topic>Noise reduction</topic><topic>Rician channels</topic><topic>Signal to noise ratio</topic><toplevel>online_resources</toplevel><creatorcontrib>Lijun Bao</creatorcontrib><creatorcontrib>Wanyu Liu</creatorcontrib><creatorcontrib>Yuemin Zhu</creatorcontrib><creatorcontrib>Zhaobang Pu</creatorcontrib><creatorcontrib>Magnin, I.E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lijun Bao</au><au>Wanyu Liu</au><au>Yuemin Zhu</au><au>Zhaobang Pu</au><au>Magnin, I.E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sparse representation based MRI denoising with total variation</atitle><btitle>2008 9th International Conference on Signal Processing</btitle><stitle>ICOSP</stitle><date>2008-10</date><risdate>2008</risdate><spage>2154</spage><epage>2157</epage><pages>2154-2157</pages><issn>2164-5221</issn><isbn>1424421780</isbn><isbn>9781424421787</isbn><eisbn>1424421799</eisbn><eisbn>9781424421794</eisbn><abstract>Diffusion tensor magnetic resonance imaging is a newly developed imaging technique; however, this technique is noise sensitive. This paper presents a novel method for sparse representation denoising of MR images that propose sparse representation of the corrupted images with the knowledge of the Rician noise model. The proposed model inferring the prior that MR images are composed of several separated regions with uniform intensity, therefore, total variation can be combined to further smooth every region. Since sparse representation performs well in extracting features from images, coupled with the total variation regularization, the method offers excellent combination of noise removal and edge preservation. The experiment results demonstrate that the proposed method preserves most of the fine structure in cardiac diffusion weighted images.</abstract><pub>IEEE</pub><doi>10.1109/ICOSP.2008.4697573</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2164-5221 |
ispartof | 2008 9th International Conference on Signal Processing, 2008, p.2154-2157 |
issn | 2164-5221 |
language | eng |
recordid | cdi_ieee_primary_4697573 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biomedical imaging Diffusion tensor imaging Filters Image denoising Magnetic noise Magnetic resonance imaging Noise level Noise reduction Rician channels Signal to noise ratio |
title | Sparse representation based MRI denoising with total variation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sparse%20representation%20based%20MRI%20denoising%20with%20total%20variation&rft.btitle=2008%209th%20International%20Conference%20on%20Signal%20Processing&rft.au=Lijun%20Bao&rft.date=2008-10&rft.spage=2154&rft.epage=2157&rft.pages=2154-2157&rft.issn=2164-5221&rft.isbn=1424421780&rft.isbn_list=9781424421787&rft_id=info:doi/10.1109/ICOSP.2008.4697573&rft_dat=%3Cieee_6IE%3E4697573%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424421799&rft.eisbn_list=9781424421794&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4697573&rfr_iscdi=true |