Sparse representation based MRI denoising with total variation

Diffusion tensor magnetic resonance imaging is a newly developed imaging technique; however, this technique is noise sensitive. This paper presents a novel method for sparse representation denoising of MR images that propose sparse representation of the corrupted images with the knowledge of the Ric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lijun Bao, Wanyu Liu, Yuemin Zhu, Zhaobang Pu, Magnin, I.E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2157
container_issue
container_start_page 2154
container_title
container_volume
creator Lijun Bao
Wanyu Liu
Yuemin Zhu
Zhaobang Pu
Magnin, I.E.
description Diffusion tensor magnetic resonance imaging is a newly developed imaging technique; however, this technique is noise sensitive. This paper presents a novel method for sparse representation denoising of MR images that propose sparse representation of the corrupted images with the knowledge of the Rician noise model. The proposed model inferring the prior that MR images are composed of several separated regions with uniform intensity, therefore, total variation can be combined to further smooth every region. Since sparse representation performs well in extracting features from images, coupled with the total variation regularization, the method offers excellent combination of noise removal and edge preservation. The experiment results demonstrate that the proposed method preserves most of the fine structure in cardiac diffusion weighted images.
doi_str_mv 10.1109/ICOSP.2008.4697573
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4697573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4697573</ieee_id><sourcerecordid>4697573</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ec2d08b839e5265f2807d2978a0dd713c1d565d489dc8c1e3aa07ccfe0bc2713</originalsourceid><addsrcrecordid>eNpFkN1Kw0AUhFe0YFv7AnqzL5B4zm6yPzeCFKuFSsV4Xza7J7pSk5ANim_vX8GrYZhv5mIYO0fIEcFerpfb6iEXACYvlNWllkdshoUoCoHa2uN_Y-CETQWqIiuFwAmb_ZQsICp9yhYpvQKARGOUVFN2VfVuSMQH6gdK1I5ujF3La5co8PvHNQ_UdjHF9pl_xPGFj93o9vzdDfEXPGOTxu0TLQ46Z9Xq5ml5l222t-vl9SaLFsaMvAhgaiMtlUKVjTCgg7DaOAhBo_QYSlWGwtjgjUeSzoH2viGovfjO5-zibzUS0a4f4psbPneHG-QXzKxNSw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sparse representation based MRI denoising with total variation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lijun Bao ; Wanyu Liu ; Yuemin Zhu ; Zhaobang Pu ; Magnin, I.E.</creator><creatorcontrib>Lijun Bao ; Wanyu Liu ; Yuemin Zhu ; Zhaobang Pu ; Magnin, I.E.</creatorcontrib><description>Diffusion tensor magnetic resonance imaging is a newly developed imaging technique; however, this technique is noise sensitive. This paper presents a novel method for sparse representation denoising of MR images that propose sparse representation of the corrupted images with the knowledge of the Rician noise model. The proposed model inferring the prior that MR images are composed of several separated regions with uniform intensity, therefore, total variation can be combined to further smooth every region. Since sparse representation performs well in extracting features from images, coupled with the total variation regularization, the method offers excellent combination of noise removal and edge preservation. The experiment results demonstrate that the proposed method preserves most of the fine structure in cardiac diffusion weighted images.</description><identifier>ISSN: 2164-5221</identifier><identifier>ISBN: 1424421780</identifier><identifier>ISBN: 9781424421787</identifier><identifier>EISBN: 1424421799</identifier><identifier>EISBN: 9781424421794</identifier><identifier>DOI: 10.1109/ICOSP.2008.4697573</identifier><identifier>LCCN: 2008901167</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Diffusion tensor imaging ; Filters ; Image denoising ; Magnetic noise ; Magnetic resonance imaging ; Noise level ; Noise reduction ; Rician channels ; Signal to noise ratio</subject><ispartof>2008 9th International Conference on Signal Processing, 2008, p.2154-2157</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4697573$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4697573$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lijun Bao</creatorcontrib><creatorcontrib>Wanyu Liu</creatorcontrib><creatorcontrib>Yuemin Zhu</creatorcontrib><creatorcontrib>Zhaobang Pu</creatorcontrib><creatorcontrib>Magnin, I.E.</creatorcontrib><title>Sparse representation based MRI denoising with total variation</title><title>2008 9th International Conference on Signal Processing</title><addtitle>ICOSP</addtitle><description>Diffusion tensor magnetic resonance imaging is a newly developed imaging technique; however, this technique is noise sensitive. This paper presents a novel method for sparse representation denoising of MR images that propose sparse representation of the corrupted images with the knowledge of the Rician noise model. The proposed model inferring the prior that MR images are composed of several separated regions with uniform intensity, therefore, total variation can be combined to further smooth every region. Since sparse representation performs well in extracting features from images, coupled with the total variation regularization, the method offers excellent combination of noise removal and edge preservation. The experiment results demonstrate that the proposed method preserves most of the fine structure in cardiac diffusion weighted images.</description><subject>Biomedical imaging</subject><subject>Diffusion tensor imaging</subject><subject>Filters</subject><subject>Image denoising</subject><subject>Magnetic noise</subject><subject>Magnetic resonance imaging</subject><subject>Noise level</subject><subject>Noise reduction</subject><subject>Rician channels</subject><subject>Signal to noise ratio</subject><issn>2164-5221</issn><isbn>1424421780</isbn><isbn>9781424421787</isbn><isbn>1424421799</isbn><isbn>9781424421794</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkN1Kw0AUhFe0YFv7AnqzL5B4zm6yPzeCFKuFSsV4Xza7J7pSk5ANim_vX8GrYZhv5mIYO0fIEcFerpfb6iEXACYvlNWllkdshoUoCoHa2uN_Y-CETQWqIiuFwAmb_ZQsICp9yhYpvQKARGOUVFN2VfVuSMQH6gdK1I5ujF3La5co8PvHNQ_UdjHF9pl_xPGFj93o9vzdDfEXPGOTxu0TLQ46Z9Xq5ml5l222t-vl9SaLFsaMvAhgaiMtlUKVjTCgg7DaOAhBo_QYSlWGwtjgjUeSzoH2viGovfjO5-zibzUS0a4f4psbPneHG-QXzKxNSw</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Lijun Bao</creator><creator>Wanyu Liu</creator><creator>Yuemin Zhu</creator><creator>Zhaobang Pu</creator><creator>Magnin, I.E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200810</creationdate><title>Sparse representation based MRI denoising with total variation</title><author>Lijun Bao ; Wanyu Liu ; Yuemin Zhu ; Zhaobang Pu ; Magnin, I.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ec2d08b839e5265f2807d2978a0dd713c1d565d489dc8c1e3aa07ccfe0bc2713</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biomedical imaging</topic><topic>Diffusion tensor imaging</topic><topic>Filters</topic><topic>Image denoising</topic><topic>Magnetic noise</topic><topic>Magnetic resonance imaging</topic><topic>Noise level</topic><topic>Noise reduction</topic><topic>Rician channels</topic><topic>Signal to noise ratio</topic><toplevel>online_resources</toplevel><creatorcontrib>Lijun Bao</creatorcontrib><creatorcontrib>Wanyu Liu</creatorcontrib><creatorcontrib>Yuemin Zhu</creatorcontrib><creatorcontrib>Zhaobang Pu</creatorcontrib><creatorcontrib>Magnin, I.E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lijun Bao</au><au>Wanyu Liu</au><au>Yuemin Zhu</au><au>Zhaobang Pu</au><au>Magnin, I.E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sparse representation based MRI denoising with total variation</atitle><btitle>2008 9th International Conference on Signal Processing</btitle><stitle>ICOSP</stitle><date>2008-10</date><risdate>2008</risdate><spage>2154</spage><epage>2157</epage><pages>2154-2157</pages><issn>2164-5221</issn><isbn>1424421780</isbn><isbn>9781424421787</isbn><eisbn>1424421799</eisbn><eisbn>9781424421794</eisbn><abstract>Diffusion tensor magnetic resonance imaging is a newly developed imaging technique; however, this technique is noise sensitive. This paper presents a novel method for sparse representation denoising of MR images that propose sparse representation of the corrupted images with the knowledge of the Rician noise model. The proposed model inferring the prior that MR images are composed of several separated regions with uniform intensity, therefore, total variation can be combined to further smooth every region. Since sparse representation performs well in extracting features from images, coupled with the total variation regularization, the method offers excellent combination of noise removal and edge preservation. The experiment results demonstrate that the proposed method preserves most of the fine structure in cardiac diffusion weighted images.</abstract><pub>IEEE</pub><doi>10.1109/ICOSP.2008.4697573</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2164-5221
ispartof 2008 9th International Conference on Signal Processing, 2008, p.2154-2157
issn 2164-5221
language eng
recordid cdi_ieee_primary_4697573
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical imaging
Diffusion tensor imaging
Filters
Image denoising
Magnetic noise
Magnetic resonance imaging
Noise level
Noise reduction
Rician channels
Signal to noise ratio
title Sparse representation based MRI denoising with total variation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sparse%20representation%20based%20MRI%20denoising%20with%20total%20variation&rft.btitle=2008%209th%20International%20Conference%20on%20Signal%20Processing&rft.au=Lijun%20Bao&rft.date=2008-10&rft.spage=2154&rft.epage=2157&rft.pages=2154-2157&rft.issn=2164-5221&rft.isbn=1424421780&rft.isbn_list=9781424421787&rft_id=info:doi/10.1109/ICOSP.2008.4697573&rft_dat=%3Cieee_6IE%3E4697573%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424421799&rft.eisbn_list=9781424421794&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4697573&rfr_iscdi=true