A classification enhancement in hyperspectral imagery using superresolution technique

In this paper an improved supervised classification technique through applying a superresolution method on remotely sensed hyperspectral images is introduced. Superresolution methods provide high-resolution images from a sequence of low-resolution frames. In the proposed technique, classification of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mianji, F.A., Ye Zhang, Hosseinipanah, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1001
container_issue
container_start_page 998
container_title
container_volume
creator Mianji, F.A.
Ye Zhang
Hosseinipanah, M.
description In this paper an improved supervised classification technique through applying a superresolution method on remotely sensed hyperspectral images is introduced. Superresolution methods provide high-resolution images from a sequence of low-resolution frames. In the proposed technique, classification of the hyperspectral image is carried out using spectrally homogenous training classes of pixels. Low spatial resolution frames of different wavelengths of the hyperspectral image are fed to a quadratic programming based classification algorithm to enhance the spatial resolution of the classification process. The results show a better classification and an edge improvement. Target recognition is the main field which can benefit from this technique.
doi_str_mv 10.1109/ICOSP.2008.4697296
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4697296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4697296</ieee_id><sourcerecordid>4697296</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-eb40adc9fe0259dcfa448de8c187cfd125fd5a2bd34db4eb8c8a9ebdcd1961fa3</originalsourceid><addsrcrecordid>eNpFkM9KAzEYxCNasK19Ab3kBbbmy2azybEU_xQKFbTnkk2-dCPbtG52D_v2Vi14GobhNwxDyD2wOQDTj6vl5v1tzhlTcyF1ybW8IhMQXAgOpdbX_0axGzLmIEVWcA4jMvmBNAOQ5S2ZpfTJGMtBKZnLMdkuqG1MSsEHa7pwjBRjbaLFA8aOhkjr4YRtOqHtWtPQcDB7bAfapxD3NPXnrMV0bPpftENbx_DV4x0ZedMknF10SrbPTx_L12y9eVktF-ssQFl0GVaCGWe1R8YL7aw3QiiHyoIqrXfAC-8KwyuXC1cJrJRVRmPlrAMtwZt8Sh7-egMi7k7teV477C7_5N80n1lo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A classification enhancement in hyperspectral imagery using superresolution technique</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mianji, F.A. ; Ye Zhang ; Hosseinipanah, M.</creator><creatorcontrib>Mianji, F.A. ; Ye Zhang ; Hosseinipanah, M.</creatorcontrib><description>In this paper an improved supervised classification technique through applying a superresolution method on remotely sensed hyperspectral images is introduced. Superresolution methods provide high-resolution images from a sequence of low-resolution frames. In the proposed technique, classification of the hyperspectral image is carried out using spectrally homogenous training classes of pixels. Low spatial resolution frames of different wavelengths of the hyperspectral image are fed to a quadratic programming based classification algorithm to enhance the spatial resolution of the classification process. The results show a better classification and an edge improvement. Target recognition is the main field which can benefit from this technique.</description><identifier>ISSN: 2164-5221</identifier><identifier>ISBN: 1424421780</identifier><identifier>ISBN: 9781424421787</identifier><identifier>EISBN: 1424421799</identifier><identifier>EISBN: 9781424421794</identifier><identifier>DOI: 10.1109/ICOSP.2008.4697296</identifier><identifier>LCCN: 2008901167</identifier><language>eng</language><publisher>IEEE</publisher><subject>Hyperspectral imagery ; Hyperspectral imaging ; Hyperspectral sensors ; Image resolution ; Layout ; Pixel ; Quadratic programming ; Reflectivity ; Remote sensing ; Spatial resolution ; Superresolution ; Supervised classification ; Target recognition</subject><ispartof>2008 9th International Conference on Signal Processing, 2008, p.998-1001</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4697296$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4697296$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mianji, F.A.</creatorcontrib><creatorcontrib>Ye Zhang</creatorcontrib><creatorcontrib>Hosseinipanah, M.</creatorcontrib><title>A classification enhancement in hyperspectral imagery using superresolution technique</title><title>2008 9th International Conference on Signal Processing</title><addtitle>ICOSP</addtitle><description>In this paper an improved supervised classification technique through applying a superresolution method on remotely sensed hyperspectral images is introduced. Superresolution methods provide high-resolution images from a sequence of low-resolution frames. In the proposed technique, classification of the hyperspectral image is carried out using spectrally homogenous training classes of pixels. Low spatial resolution frames of different wavelengths of the hyperspectral image are fed to a quadratic programming based classification algorithm to enhance the spatial resolution of the classification process. The results show a better classification and an edge improvement. Target recognition is the main field which can benefit from this technique.</description><subject>Hyperspectral imagery</subject><subject>Hyperspectral imaging</subject><subject>Hyperspectral sensors</subject><subject>Image resolution</subject><subject>Layout</subject><subject>Pixel</subject><subject>Quadratic programming</subject><subject>Reflectivity</subject><subject>Remote sensing</subject><subject>Spatial resolution</subject><subject>Superresolution</subject><subject>Supervised classification</subject><subject>Target recognition</subject><issn>2164-5221</issn><isbn>1424421780</isbn><isbn>9781424421787</isbn><isbn>1424421799</isbn><isbn>9781424421794</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkM9KAzEYxCNasK19Ab3kBbbmy2azybEU_xQKFbTnkk2-dCPbtG52D_v2Vi14GobhNwxDyD2wOQDTj6vl5v1tzhlTcyF1ybW8IhMQXAgOpdbX_0axGzLmIEVWcA4jMvmBNAOQ5S2ZpfTJGMtBKZnLMdkuqG1MSsEHa7pwjBRjbaLFA8aOhkjr4YRtOqHtWtPQcDB7bAfapxD3NPXnrMV0bPpftENbx_DV4x0ZedMknF10SrbPTx_L12y9eVktF-ssQFl0GVaCGWe1R8YL7aw3QiiHyoIqrXfAC-8KwyuXC1cJrJRVRmPlrAMtwZt8Sh7-egMi7k7teV477C7_5N80n1lo</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Mianji, F.A.</creator><creator>Ye Zhang</creator><creator>Hosseinipanah, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200810</creationdate><title>A classification enhancement in hyperspectral imagery using superresolution technique</title><author>Mianji, F.A. ; Ye Zhang ; Hosseinipanah, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-eb40adc9fe0259dcfa448de8c187cfd125fd5a2bd34db4eb8c8a9ebdcd1961fa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Hyperspectral imagery</topic><topic>Hyperspectral imaging</topic><topic>Hyperspectral sensors</topic><topic>Image resolution</topic><topic>Layout</topic><topic>Pixel</topic><topic>Quadratic programming</topic><topic>Reflectivity</topic><topic>Remote sensing</topic><topic>Spatial resolution</topic><topic>Superresolution</topic><topic>Supervised classification</topic><topic>Target recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Mianji, F.A.</creatorcontrib><creatorcontrib>Ye Zhang</creatorcontrib><creatorcontrib>Hosseinipanah, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mianji, F.A.</au><au>Ye Zhang</au><au>Hosseinipanah, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A classification enhancement in hyperspectral imagery using superresolution technique</atitle><btitle>2008 9th International Conference on Signal Processing</btitle><stitle>ICOSP</stitle><date>2008-10</date><risdate>2008</risdate><spage>998</spage><epage>1001</epage><pages>998-1001</pages><issn>2164-5221</issn><isbn>1424421780</isbn><isbn>9781424421787</isbn><eisbn>1424421799</eisbn><eisbn>9781424421794</eisbn><abstract>In this paper an improved supervised classification technique through applying a superresolution method on remotely sensed hyperspectral images is introduced. Superresolution methods provide high-resolution images from a sequence of low-resolution frames. In the proposed technique, classification of the hyperspectral image is carried out using spectrally homogenous training classes of pixels. Low spatial resolution frames of different wavelengths of the hyperspectral image are fed to a quadratic programming based classification algorithm to enhance the spatial resolution of the classification process. The results show a better classification and an edge improvement. Target recognition is the main field which can benefit from this technique.</abstract><pub>IEEE</pub><doi>10.1109/ICOSP.2008.4697296</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2164-5221
ispartof 2008 9th International Conference on Signal Processing, 2008, p.998-1001
issn 2164-5221
language eng
recordid cdi_ieee_primary_4697296
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Hyperspectral imagery
Hyperspectral imaging
Hyperspectral sensors
Image resolution
Layout
Pixel
Quadratic programming
Reflectivity
Remote sensing
Spatial resolution
Superresolution
Supervised classification
Target recognition
title A classification enhancement in hyperspectral imagery using superresolution technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T03%3A19%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20classification%20enhancement%20in%20hyperspectral%20imagery%20using%20superresolution%20technique&rft.btitle=2008%209th%20International%20Conference%20on%20Signal%20Processing&rft.au=Mianji,%20F.A.&rft.date=2008-10&rft.spage=998&rft.epage=1001&rft.pages=998-1001&rft.issn=2164-5221&rft.isbn=1424421780&rft.isbn_list=9781424421787&rft_id=info:doi/10.1109/ICOSP.2008.4697296&rft_dat=%3Cieee_6IE%3E4697296%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424421799&rft.eisbn_list=9781424421794&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4697296&rfr_iscdi=true