Confidence measure extraction for SVM speech classifiers using artificial neural networks

Although the recognition results of support vector machines are very promising in many applications, however there is a gap between the accuracy of SVM based speech recognizers and time series models (e.g. HMM). The main reason is the lack of reliable confidence measure (CM) in SVM outputs. This pap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Amini, S., Razzazi, F., Nayebi, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 626
container_issue
container_start_page 622
container_title
container_volume
creator Amini, S.
Razzazi, F.
Nayebi, K.
description Although the recognition results of support vector machines are very promising in many applications, however there is a gap between the accuracy of SVM based speech recognizers and time series models (e.g. HMM). The main reason is the lack of reliable confidence measure (CM) in SVM outputs. This paper describes two methods to add CM into binary SVM outputs using trainable intelligent systems. The first method is the simulation of Platt method using neural network while the second method is a linear combination of Platt sigmoid functions using multi-layer perceptron. The results of experiments, arranged on a set of confused phonemes using TIMIT corpus, show that the second method demonstrates better performance than the first one, e.g. After rejecting 20% of classifications by CM, the achieved error rates for ldquo/p/,/t/rdquo, ldquo/p/,/q/rdquo and ldquo/t/,q/rdquo phonemes are 3.86%, 2.1% and 0.6% respectively, while this error rate is much higher without employing neural networks. Although by increasing the number of phonemes, the performance of the second method will match that of the first one.
doi_str_mv 10.1109/ICOSP.2008.4697209
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4697209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4697209</ieee_id><sourcerecordid>4697209</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-57fbe53b3975f8c81a33aa8ab657e6d1fadda6364a76ae10ebdef09f36a432c13</originalsourceid><addsrcrecordid>eNpFkM1KAzEUhSNasK19Ad3kBabmJjPJZCmDP4VKhargqtzJ3Gi0nSnJFPXt_Su4-vgW53A4jJ2CmAIIez6rFsu7qRSinObaGinsARtBLvNcgrH28F9KccSGEnSeFVLCgI1-QlYAaHPMJim9CiEUlKVWesieqq71oaHWEd8Qpl0kTh99RNeHruW-i3z5eMvTlsi9cLfGlIIPFBPfpdA-c4z9t7uAa97SLv6if-_iWzphA4_rRJM9x-zh6vK-usnmi-tZdTHPApiizwrjaypUrawpfOlKQKUQS6x1YUg34LFp8HtqjkYjgaC6IS-sVxpzJR2oMTv76w1EtNrGsMH4udp_pL4A7qNY3Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Confidence measure extraction for SVM speech classifiers using artificial neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Amini, S. ; Razzazi, F. ; Nayebi, K.</creator><creatorcontrib>Amini, S. ; Razzazi, F. ; Nayebi, K.</creatorcontrib><description>Although the recognition results of support vector machines are very promising in many applications, however there is a gap between the accuracy of SVM based speech recognizers and time series models (e.g. HMM). The main reason is the lack of reliable confidence measure (CM) in SVM outputs. This paper describes two methods to add CM into binary SVM outputs using trainable intelligent systems. The first method is the simulation of Platt method using neural network while the second method is a linear combination of Platt sigmoid functions using multi-layer perceptron. The results of experiments, arranged on a set of confused phonemes using TIMIT corpus, show that the second method demonstrates better performance than the first one, e.g. After rejecting 20% of classifications by CM, the achieved error rates for ldquo/p/,/t/rdquo, ldquo/p/,/q/rdquo and ldquo/t/,q/rdquo phonemes are 3.86%, 2.1% and 0.6% respectively, while this error rate is much higher without employing neural networks. Although by increasing the number of phonemes, the performance of the second method will match that of the first one.</description><identifier>ISSN: 2164-5221</identifier><identifier>ISBN: 1424421780</identifier><identifier>ISBN: 9781424421787</identifier><identifier>EISBN: 1424421799</identifier><identifier>EISBN: 9781424421794</identifier><identifier>DOI: 10.1109/ICOSP.2008.4697209</identifier><identifier>LCCN: 2008901167</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Error analysis ; Hidden Markov models ; Intelligent systems ; Multi-layer neural network ; Multilayer perceptrons ; Neural networks ; Speech recognition ; Support vector machine classification ; Support vector machines</subject><ispartof>2008 9th International Conference on Signal Processing, 2008, p.622-626</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4697209$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4697209$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Amini, S.</creatorcontrib><creatorcontrib>Razzazi, F.</creatorcontrib><creatorcontrib>Nayebi, K.</creatorcontrib><title>Confidence measure extraction for SVM speech classifiers using artificial neural networks</title><title>2008 9th International Conference on Signal Processing</title><addtitle>ICOSP</addtitle><description>Although the recognition results of support vector machines are very promising in many applications, however there is a gap between the accuracy of SVM based speech recognizers and time series models (e.g. HMM). The main reason is the lack of reliable confidence measure (CM) in SVM outputs. This paper describes two methods to add CM into binary SVM outputs using trainable intelligent systems. The first method is the simulation of Platt method using neural network while the second method is a linear combination of Platt sigmoid functions using multi-layer perceptron. The results of experiments, arranged on a set of confused phonemes using TIMIT corpus, show that the second method demonstrates better performance than the first one, e.g. After rejecting 20% of classifications by CM, the achieved error rates for ldquo/p/,/t/rdquo, ldquo/p/,/q/rdquo and ldquo/t/,q/rdquo phonemes are 3.86%, 2.1% and 0.6% respectively, while this error rate is much higher without employing neural networks. Although by increasing the number of phonemes, the performance of the second method will match that of the first one.</description><subject>Artificial neural networks</subject><subject>Error analysis</subject><subject>Hidden Markov models</subject><subject>Intelligent systems</subject><subject>Multi-layer neural network</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Speech recognition</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><issn>2164-5221</issn><isbn>1424421780</isbn><isbn>9781424421787</isbn><isbn>1424421799</isbn><isbn>9781424421794</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkM1KAzEUhSNasK19Ad3kBabmJjPJZCmDP4VKhargqtzJ3Gi0nSnJFPXt_Su4-vgW53A4jJ2CmAIIez6rFsu7qRSinObaGinsARtBLvNcgrH28F9KccSGEnSeFVLCgI1-QlYAaHPMJim9CiEUlKVWesieqq71oaHWEd8Qpl0kTh99RNeHruW-i3z5eMvTlsi9cLfGlIIPFBPfpdA-c4z9t7uAa97SLv6if-_iWzphA4_rRJM9x-zh6vK-usnmi-tZdTHPApiizwrjaypUrawpfOlKQKUQS6x1YUg34LFp8HtqjkYjgaC6IS-sVxpzJR2oMTv76w1EtNrGsMH4udp_pL4A7qNY3Q</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Amini, S.</creator><creator>Razzazi, F.</creator><creator>Nayebi, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200810</creationdate><title>Confidence measure extraction for SVM speech classifiers using artificial neural networks</title><author>Amini, S. ; Razzazi, F. ; Nayebi, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-57fbe53b3975f8c81a33aa8ab657e6d1fadda6364a76ae10ebdef09f36a432c13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial neural networks</topic><topic>Error analysis</topic><topic>Hidden Markov models</topic><topic>Intelligent systems</topic><topic>Multi-layer neural network</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Speech recognition</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Amini, S.</creatorcontrib><creatorcontrib>Razzazi, F.</creatorcontrib><creatorcontrib>Nayebi, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amini, S.</au><au>Razzazi, F.</au><au>Nayebi, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Confidence measure extraction for SVM speech classifiers using artificial neural networks</atitle><btitle>2008 9th International Conference on Signal Processing</btitle><stitle>ICOSP</stitle><date>2008-10</date><risdate>2008</risdate><spage>622</spage><epage>626</epage><pages>622-626</pages><issn>2164-5221</issn><isbn>1424421780</isbn><isbn>9781424421787</isbn><eisbn>1424421799</eisbn><eisbn>9781424421794</eisbn><abstract>Although the recognition results of support vector machines are very promising in many applications, however there is a gap between the accuracy of SVM based speech recognizers and time series models (e.g. HMM). The main reason is the lack of reliable confidence measure (CM) in SVM outputs. This paper describes two methods to add CM into binary SVM outputs using trainable intelligent systems. The first method is the simulation of Platt method using neural network while the second method is a linear combination of Platt sigmoid functions using multi-layer perceptron. The results of experiments, arranged on a set of confused phonemes using TIMIT corpus, show that the second method demonstrates better performance than the first one, e.g. After rejecting 20% of classifications by CM, the achieved error rates for ldquo/p/,/t/rdquo, ldquo/p/,/q/rdquo and ldquo/t/,q/rdquo phonemes are 3.86%, 2.1% and 0.6% respectively, while this error rate is much higher without employing neural networks. Although by increasing the number of phonemes, the performance of the second method will match that of the first one.</abstract><pub>IEEE</pub><doi>10.1109/ICOSP.2008.4697209</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2164-5221
ispartof 2008 9th International Conference on Signal Processing, 2008, p.622-626
issn 2164-5221
language eng
recordid cdi_ieee_primary_4697209
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Error analysis
Hidden Markov models
Intelligent systems
Multi-layer neural network
Multilayer perceptrons
Neural networks
Speech recognition
Support vector machine classification
Support vector machines
title Confidence measure extraction for SVM speech classifiers using artificial neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A06%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Confidence%20measure%20extraction%20for%20SVM%20speech%20classifiers%20using%20artificial%20neural%20networks&rft.btitle=2008%209th%20International%20Conference%20on%20Signal%20Processing&rft.au=Amini,%20S.&rft.date=2008-10&rft.spage=622&rft.epage=626&rft.pages=622-626&rft.issn=2164-5221&rft.isbn=1424421780&rft.isbn_list=9781424421787&rft_id=info:doi/10.1109/ICOSP.2008.4697209&rft_dat=%3Cieee_6IE%3E4697209%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424421799&rft.eisbn_list=9781424421794&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4697209&rfr_iscdi=true