Application of efficient score function estimation in blind speech-music separation

In this paper speech-music separation using blind source separation is discussed. The separating algorithm is in the time domain and based on the mutual information minimization. Also the natural gradient algorithm is used for its minimization. In order to do that, score function estimation from obs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pishravian, A., Aghabozorgi, M.R., Abutalebi, H.R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 621
container_issue
container_start_page 618
container_title
container_volume
creator Pishravian, A.
Aghabozorgi, M.R.
Abutalebi, H.R.
description In this paper speech-music separation using blind source separation is discussed. The separating algorithm is in the time domain and based on the mutual information minimization. Also the natural gradient algorithm is used for its minimization. In order to do that, score function estimation from observation signal samples is needed. The accuracy and the speed of the mentioned estimation will affect on the quality of the separated signals and the processing time of the algorithm. The score function estimation in the presented algorithm is based on the fast FFT-based kernel density estimation method. The experimental results of the presented algorithm on the speech-music separation and comparing to the separating algorithm which is based on the minimum mean square error estimator, indicate that it can cause better performance and less processing time than other methods.
doi_str_mv 10.1109/ICOSP.2008.4697208
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4697208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4697208</ieee_id><sourcerecordid>4697208</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-84d4af84455a220faee1514341a9ec5d427ad9165ca43943f3264d715dccff593</originalsourceid><addsrcrecordid>eNpFUM1KAzEYjGjBtvYF9JIX2Jov-ZJNjmXRWihUqJ5LzH7BSLu7bLYH315tC56GYX4YhrF7EHMA4R5X1Wb7OpdC2DkaV0phr9gEUCJKKJ27_idW3LCxBIOFlhJGbPIXcgLAlLdslvOXEEKBtUaZMdsuum6fgh9S2_A2cooxhUTNwHNoe-Lx2ISTRnlIh7MtNfxjn5qa544ofBaHY06BZ-p8fzLcsVH0-0yzC07Z-_PTW_VSrDfLVbVYFwlKPRQWa_TRImrtpRTRE4EGVAjeUdA1ytLXDowOHpVDFZU0WJeg6xBi1E5N2cO5NxHRrut_9_Xfu8s76gdKclV8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application of efficient score function estimation in blind speech-music separation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pishravian, A. ; Aghabozorgi, M.R. ; Abutalebi, H.R.</creator><creatorcontrib>Pishravian, A. ; Aghabozorgi, M.R. ; Abutalebi, H.R.</creatorcontrib><description>In this paper speech-music separation using blind source separation is discussed. The separating algorithm is in the time domain and based on the mutual information minimization. Also the natural gradient algorithm is used for its minimization. In order to do that, score function estimation from observation signal samples is needed. The accuracy and the speed of the mentioned estimation will affect on the quality of the separated signals and the processing time of the algorithm. The score function estimation in the presented algorithm is based on the fast FFT-based kernel density estimation method. The experimental results of the presented algorithm on the speech-music separation and comparing to the separating algorithm which is based on the minimum mean square error estimator, indicate that it can cause better performance and less processing time than other methods.</description><identifier>ISSN: 2164-5221</identifier><identifier>ISBN: 1424421780</identifier><identifier>ISBN: 9781424421787</identifier><identifier>EISBN: 1424421799</identifier><identifier>EISBN: 9781424421794</identifier><identifier>DOI: 10.1109/ICOSP.2008.4697208</identifier><identifier>LCCN: 2008901167</identifier><language>eng</language><publisher>IEEE</publisher><subject>Blind source separation ; Independent component analysis ; Maximum likelihood estimation ; Mean square error methods ; Minimization methods ; Mutual information ; Signal processing ; Signal processing algorithms ; Source separation ; Speech enhancement</subject><ispartof>2008 9th International Conference on Signal Processing, 2008, p.618-621</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4697208$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4697208$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pishravian, A.</creatorcontrib><creatorcontrib>Aghabozorgi, M.R.</creatorcontrib><creatorcontrib>Abutalebi, H.R.</creatorcontrib><title>Application of efficient score function estimation in blind speech-music separation</title><title>2008 9th International Conference on Signal Processing</title><addtitle>ICOSP</addtitle><description>In this paper speech-music separation using blind source separation is discussed. The separating algorithm is in the time domain and based on the mutual information minimization. Also the natural gradient algorithm is used for its minimization. In order to do that, score function estimation from observation signal samples is needed. The accuracy and the speed of the mentioned estimation will affect on the quality of the separated signals and the processing time of the algorithm. The score function estimation in the presented algorithm is based on the fast FFT-based kernel density estimation method. The experimental results of the presented algorithm on the speech-music separation and comparing to the separating algorithm which is based on the minimum mean square error estimator, indicate that it can cause better performance and less processing time than other methods.</description><subject>Blind source separation</subject><subject>Independent component analysis</subject><subject>Maximum likelihood estimation</subject><subject>Mean square error methods</subject><subject>Minimization methods</subject><subject>Mutual information</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Source separation</subject><subject>Speech enhancement</subject><issn>2164-5221</issn><isbn>1424421780</isbn><isbn>9781424421787</isbn><isbn>1424421799</isbn><isbn>9781424421794</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUM1KAzEYjGjBtvYF9JIX2Jov-ZJNjmXRWihUqJ5LzH7BSLu7bLYH315tC56GYX4YhrF7EHMA4R5X1Wb7OpdC2DkaV0phr9gEUCJKKJ27_idW3LCxBIOFlhJGbPIXcgLAlLdslvOXEEKBtUaZMdsuum6fgh9S2_A2cooxhUTNwHNoe-Lx2ISTRnlIh7MtNfxjn5qa544ofBaHY06BZ-p8fzLcsVH0-0yzC07Z-_PTW_VSrDfLVbVYFwlKPRQWa_TRImrtpRTRE4EGVAjeUdA1ytLXDowOHpVDFZU0WJeg6xBi1E5N2cO5NxHRrut_9_Xfu8s76gdKclV8</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Pishravian, A.</creator><creator>Aghabozorgi, M.R.</creator><creator>Abutalebi, H.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200810</creationdate><title>Application of efficient score function estimation in blind speech-music separation</title><author>Pishravian, A. ; Aghabozorgi, M.R. ; Abutalebi, H.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-84d4af84455a220faee1514341a9ec5d427ad9165ca43943f3264d715dccff593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Blind source separation</topic><topic>Independent component analysis</topic><topic>Maximum likelihood estimation</topic><topic>Mean square error methods</topic><topic>Minimization methods</topic><topic>Mutual information</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Source separation</topic><topic>Speech enhancement</topic><toplevel>online_resources</toplevel><creatorcontrib>Pishravian, A.</creatorcontrib><creatorcontrib>Aghabozorgi, M.R.</creatorcontrib><creatorcontrib>Abutalebi, H.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pishravian, A.</au><au>Aghabozorgi, M.R.</au><au>Abutalebi, H.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of efficient score function estimation in blind speech-music separation</atitle><btitle>2008 9th International Conference on Signal Processing</btitle><stitle>ICOSP</stitle><date>2008-10</date><risdate>2008</risdate><spage>618</spage><epage>621</epage><pages>618-621</pages><issn>2164-5221</issn><isbn>1424421780</isbn><isbn>9781424421787</isbn><eisbn>1424421799</eisbn><eisbn>9781424421794</eisbn><abstract>In this paper speech-music separation using blind source separation is discussed. The separating algorithm is in the time domain and based on the mutual information minimization. Also the natural gradient algorithm is used for its minimization. In order to do that, score function estimation from observation signal samples is needed. The accuracy and the speed of the mentioned estimation will affect on the quality of the separated signals and the processing time of the algorithm. The score function estimation in the presented algorithm is based on the fast FFT-based kernel density estimation method. The experimental results of the presented algorithm on the speech-music separation and comparing to the separating algorithm which is based on the minimum mean square error estimator, indicate that it can cause better performance and less processing time than other methods.</abstract><pub>IEEE</pub><doi>10.1109/ICOSP.2008.4697208</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2164-5221
ispartof 2008 9th International Conference on Signal Processing, 2008, p.618-621
issn 2164-5221
language eng
recordid cdi_ieee_primary_4697208
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Blind source separation
Independent component analysis
Maximum likelihood estimation
Mean square error methods
Minimization methods
Mutual information
Signal processing
Signal processing algorithms
Source separation
Speech enhancement
title Application of efficient score function estimation in blind speech-music separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A24%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20efficient%20score%20function%20estimation%20in%20blind%20speech-music%20separation&rft.btitle=2008%209th%20International%20Conference%20on%20Signal%20Processing&rft.au=Pishravian,%20A.&rft.date=2008-10&rft.spage=618&rft.epage=621&rft.pages=618-621&rft.issn=2164-5221&rft.isbn=1424421780&rft.isbn_list=9781424421787&rft_id=info:doi/10.1109/ICOSP.2008.4697208&rft_dat=%3Cieee_6IE%3E4697208%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424421799&rft.eisbn_list=9781424421794&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4697208&rfr_iscdi=true